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According to the so-called “first law” of behavior genet-
ics, “all human behavioral traits are heritable,” no matter 
how socially and historically dependent and contingent 
they might seem (Turkheimer, 2000, p. 160). This “law,” 
construed as a “very robust empirical regularity (not  
a universal, mechanistic truth)” (Chabris et  al., 2012,  
p. 305), has seemingly been confirmed by decades of 
twin and adoption studies. The search for genetic vari-
ants responsible for this heritability has proceeded in 
two phases.

The first phase was characterized by candidate-gene-
association (CGA) studies. On the basis of such studies, 
researchers reported that polymorphisms of specific genes 
could predict, for example, likelihood or “risk” of perfor-
mance on intelligence tests (Fiedorowicz et al., 2007), 
educational attainment/achievement (EA; Beaver et al., 
2012; Shanahan et al., 2008), income/wealth (Frydman 
et al., 2011), and voting behavior (Fowler & Dawes, 2008). 
CGA studies have now mainly fallen out of favor in the 
behavior-genetics community (Chabris et  al., 2012; 
Duncan & Keller, 2011; Flint et al., 2020). The second and 
current phase is characterized by genome-wide associa-
tion studies (GWASs), polygenic risk scores (PRSs), and 
single-nucleotide polymorphism (SNP) heritability esti-
mates. The claims are the same as in the era of CGA 

studies: Polymorphisms of specific genes can predict, for 
example, the risk of performance on intelligence tests 
(Hill, Marioni, et al., 2019), educational attainment ( J. J. 
Lee et al., 2018), income/wealth (Hill, Davies, et al., 2019), 
and voting behavior (Aaroe et al., 2021). The difference 
is that instead of a single polymorphism of relatively large 
effect size predicting a given behavior, millions of poly-
morphisms, each of minuscule effect size, are predictive. 
The current phase has recently been referred to as a 
“golden age”: “Genomic technology has ushered in a 
golden age of new tools to address enduring questions 
about how genes and environments combine to create 
unique human lives” (Harden, 2021, p. 37).

As in the CGA study era, current predictive claims, 
if correct, have profound social implications. For exam-
ple, in a well-known study involving more than a mil-
lion subjects ( J. J. Lee et al., 2018), researchers reported 
that they could predict 11.4% of the population variance 
in years of schooling completed on the basis of a PRS 
derived from the effect sizes of millions of different 
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alleles. According to Plomin and von Stumm (2018), 
direct-to-consumer PRSs will be used to predict peo-
ple’s genetic propensity to learn, reason, and solve 
problems. According to Dunkel et al. (2019), Jews have 
higher PRSs for general intelligence than Catholics and 
Lutherans. And according to Piffer (2019), PRSs predict 
supposed population-based differences in IQ.

In a blunt assessment of CGA studies, Keller com-
mented, “This should be a real cautionary tale. How on 
Earth could we have spent 20 years and hundreds of 
millions of dollars studying pure noise?” (as quoted in 
Yong, 2019, para. 6). The rise of the new golden age 
from the ashes of CGA studies has occurred at a pre-
cipitous rate. Have the lessons of the “cautionary tale” 
been taken to heart? To a large extent, they have not. 
Some of the same problems that beset CGA studies have 
reappeared in new forms, together with a host of new 
difficulties related to new methods, new sources of 
data, and a unique focal point (sizable segments of the 
human genome, as opposed to individual genes).

CGA Studies

Basics

When variant forms of corresponding DNA sequences 
occur in more than 1% of a population, they are consid-
ered “common” in that population and are called poly-
morphisms (the expressions allele and polymorphism are 
used interchangeably). The search for the genetic basis 
of heritability, or genetic risk factors, is a search for dif-
ferences in allele frequencies between case subjects and 
control subjects with dichotomous traits, or between 
those with different trait values in a quantitative trait (for 
the most part, for ease of exposition, attributes1 are 
referred to as if they were dichotomous).

Before the dramatic advances in technology and 
reductions in cost that now enable the sequencing of 
millions of base pairs of the genomes of millions of 
individuals, the hunt for genetic variants focused on a 
small number of previously identified polymorphisms 
of a small number of genes. The most widely studied 
of these genes (about four or five) are involved in regu-
lating a class of neurotransmitters known as mono-
amines and have long been the target of various 
neuropsychiatric medications. Polymorphisms of these 
genes were associated with differences in such things 
as transcriptional and translational efficiency. For exam-
ple, researchers classified polymorphisms of the MAOA 
gene as having high (H) or low (L) transcriptional effi-
ciency and correlated these polymorphisms with vari-
ous behaviors via CGA studies (Caspi et al., 2002; Sabol 
et al., 1998). A standard CGA study is hypothesis-driven; 
that is, researchers propose, on the basis of the pre-
sumed biological effect of, for example, MAOA-H versus 

MAOA-L, that those with MAOA-L are more likely to 
engage in a given behavior and test this hypothesis 
using a data set composed of cases and controls. If 
either group exhibits a statistically significant difference 
in MAOA-L frequencies (in the direction indicated  
by the hypothesis), this is taken as evidence for the 
hypothesis.

In little more than a decade, researchers published 
thousands of studies reporting statistically significant 
correlations between the same polymorphisms of the 
same handful of genes and every conceivable behav-
ior.2 And there was much speculation concerning the 
practical implications of these findings. For example, 
in a well-known study linking MAOA-L, childhood 
adversity, and risk of “antisocial” behavior, Caspi et al. 
noted that their findings could “inform the development 
of future pharmacological treatments” (2002, p. 853). 
Researchers suggested that early intervention services 
for families of MAOA-L children might be a means to 
reduce violent crime (Brooks-Crozier, 2011; Muller-
Spahn, 2008). Legal scholars and courts debated 
whether MAOA-L could be a defense in a criminal trial 
(Denno, 2011), and medical ethicists suggested that we 
might have a moral obligation to avoid having children 
with the MAOA-L genotype (Savulescu, 2014).

Despite such hype, from their inception, CGA studies 
were plagued by persistent failures of replication (Charney 
& English, 2012). In 2012, the editor of Behavior Genet-
ics, the premier behavior-genetics publication, noted, 
in setting forth strict criteria for the publication of CGA 
studies:

The literature on candidate gene associations is 
full of reports that have not stood up to rigorous 
replication [and] as a result, the psychiatric and 
behavior genetics literature has become confus-
ing, and it now seems likely that many of the 
published findings of the last decade are wrong 
or misleading and have not contributed to real 
advances in knowledge. (Hewitt, 2012, p. 1)

Eight years later, Flint et al. commented: “There are 
literally thousands of papers reporting the results of 
[CGA studies], but it’s not too harsh to say simply that 
these studies have taught us nothing useful about the 
genetic basis of psychiatric disease” (2020, p. 60).

Postmortem

In postmortem analyses of CGA studies, researchers 
have focused on phenomena that could lead to Type I 
errors (i.e., false positives). Prominent among these are 
multiple hypothesis testing (or “P-hacking”) and insuf-
ficient power.
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Multiple hypothesis testing. Null-hypothesis-significance 
testing is the most widely used data-analysis method in 
scientific disciplines. For testing a single hypothesis, the 
commonly employed value is p ≤ .05. When more than 
one test is run without any correction in the form of a 
more stringent (i.e., lower) p-value threshold, the overall 
type I error rate (i.e., false positives) is much greater than 
5%. For example, if we were to compare the frequencies 
of the MAOA-L genotype of case and control subjects for 
1,000 different behavioral traits, each of these traits would 
constitute a hypothesis and 1,000 χ2 tests (or linear 
regressions), each with its own null hypothesis. If the 
null hypothesis was true, an α level of .05 could theoreti-
cally produce 50 “significant” correlations by chance 
alone. The most straightforward way to deal with multiple 
hypothesis testing is the Bonferroni correction, in which 
the α level is divided by the number of tests performed. 
Dividing .05 by 1,000, for example, yields a p value of 
.00005.

Examples in the CGA study literature of multiple 
hypothesis testing without any statistical correction 
include data mining; searching for any correlation 
between a polymorphism and the (hundreds or thou-
sands) of behavioral variables in a data set; adding 
interaction terms in the form of G × G and/or G × E 
when the polymorphism, by itself, fails to exhibit a 
statistically significant correlation with a given behav-
ior; limiting the findings to various subgroups (e.g., 
specific genders, specific ethnicities, or specific genders 
and ethnicities) when the polymorphism fails to exhibit 
a statistically significant correlation with the general 
study population; or some combination of the above 
(Charney & English, 2012).

Insufficient power. Most researchers consider CGA 
studies to have been “underpowered” (i.e., to have had 
insufficient sample sizes), an assumption based in part on 
views concerning effect size (Border et al., 2019; Chabris 
et al., 2012; Farrell et al., 2015). CGA studies were charac-
terized by claims that single alleles could have large 
effects (e.g., the MAOA-H polymorphism was reported to 
increase the likelihood of voting by 10%; Fowler & Dawes, 
2008). As we shall see, the current view is that individual 
allelic effect sizes of complex traits are, by comparison, 
minuscule. Hence, from the present perspective, CGA 
studies were insufficiently powered to identify alleles of 
such small effect size.

GWASs

Basics

The main methodology used in the search for polymor-
phisms underlying the heritability of complex behaviors 

has rapidly shifted from CGA studies to GWASs (Visscher 
et al., 2017). The focus of most current GWASs is the 
SNP, a type of genetic variant characterized by the sub-
stitution of a particular nucleotide at a given position 
or locus on a DNA molecule. SNPs are largely, but by 
no means exclusively, diallelic; that is, they come in 
two possible forms (e.g., A or G). SNPs can occur any-
where in human genomes—within genes or in inter-
genic regions—and are the most common form of 
genetic variation in human populations (numerically, 
although not in terms of the percentage of the genome 
implicated). SNPs occur once in every 1,000 nucleotides 
on average, resulting in roughly 4 to 5 million SNPs in 
a person’s genome. Typically, researchers focus on the 
search for SNPs that are common in a population, the 
assumption being that genetic risk factors for variation 
in “common” attributes will themselves be common.

Most GWASs today are said to be “hypothesis free”; 
that is, they do not involve a specific polymorphism or 
polymorphisms known in advance that researchers 
hypothesize to be associated with a specific phenotype 
on the basis of its presumed physiological effects. 
Rather, large numbers of SNPs (e.g., a million or more) 
in large numbers of case and control subjects are com-
pared to ascertain whether there is any difference in 
SNP frequencies between the two. There are no a priori 
assumptions as to what these genetic variants might be. 
This form of GWAS is, in effect, a form of data mining. 
However, although GWASs do not test preexisting 
hypotheses, they are by no means “hypothesis-free.” A 
comparison of the frequencies of each of a million SNPs 
amounts to a million χ2 tests (or linear regressions), 
each with its own null hypothesis. If the null hypothesis 
was true, an α level of .05 could theoretically result in 
50,000 “statistically significant” associations by chance 
alone. If we employ a Bonferroni correction and divide 
.05 by 1 million (the number of tests performed), the 
resulting P value is 5.0 × 10−8. This is the threshold of 
statistical significance commonly employed in GWASs. 
An SNP that achieves this significance level is said to 
have genome-wide significance and/or to be a lead SNP.

Infinite infinitesimal alleles

Initially, the identification of alleles with genome-wide 
significance in behavior genetics was slow going, but 
researchers were convinced that the problem was insuf-
ficient power to identify risk alleles of minuscule effect 
size. This conviction was based, in part, on GWASs of 
variance in height. Although height is considered a 
highly heritable trait, by 2009, only three alleles of 
genome-wide significance had been identified, and the 
most strongly associated allele was estimated to increase 
the chance of being taller (but the difference would be 
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only ~0.4 cm) and explained only 0.3% of the total 
phenotypic variation in height across the population 
(McEvoy & Visscher, 2009). McEvoy and Visscher noted 
that these findings represented the lowest hanging fruit 
and that, in what has become something of a mantra, 
“Even bigger sample sizes would be needed to find 
genes of smaller effect” (2009, p. 298).

Findings such as these, including the limited number 
of such findings, were given theoretical justification by 
Fisher’s “infinite infinitesimal allele” model (Fisher, 
1930/1990). Fisher proposed that the heritability of com-
plex traits involved the inheritance of an indefinitely 
large (“infinite”) number of alleles, each contributing a 
minuscule (“infinitesimal”) amount to trait heritability. In 
modern terms, this would be described as “massive poly-
genicity.” For Fisher, the contribution of alleles to heri-
tability was primarily additive—the same assumption that 
underlies the additive model of heritability. The average 
mathematical effect of two or more alleles on trait heri-
tability in a population is equivalent to the sum of their 
average individual effects in that population. Although 
the average effect of any particular allele might be insig-
nificant, the combined average effect of alleles was not. 
Fisher’s model has become a “new old” dogma in behav-
ior genetics. It explains the so-called “problem of missing 
heritability”: Even with massive sample sizes, researchers 
have been able to identify only a fraction of the herita-
bility of complex behaviors as estimated by classical twin 
studies (Young, 2019). And it serves as a justification for 
ever-expanding sample sizes. Researchers have taken to 
combining data from multiple different GWASs, resulting 
in sample sizes of hundreds of thousands to more than 
a million and performing a metanalysis on the combined 
data (Zeggini & Ioannidis, 2009).

Turkheimer (2016) has compared this approach to 
“high-tech p-hacking”:

In genome-wide-association studies, data on hun-
dreds of thousands of individual bits of DNA are 
collected in large samples and then searched for 
significant results at highly stringent p levels. If 
(as usually happens) no significant results are dis-
covered the first time around, the process is 
repeated with even larger samples, continuing 
until something significant finally emerges. “Hits,” 
as they have come to be known, are now being 
accumulated for many behavioral characteristics, 
but the effect sizes for individual SNPs or alleles 
are vanishingly small. But does this methodology 
sound familiar? Genome-wide association is 
unapologetic, high-tech p-hacking. (p. 27)

To defenders of this approach, what Turkheimer 
describes as “vanishingly small” effect sizes for individual 

SNPs are those predicted by Fisher’s model, and they 
can be identified only by using massive sample sizes. In 
seeming confirmation of this, with growing sample sizes 
have come reports of ever more alleles of genome-wide 
significance. For example, consider several metanalyses 
of EA, measured as the self-reported number of years of 
schooling and often treated as a proxy variable for per-
formance on intelligence tests (Rietveld et al., 2014). In 
2014, Rietveld et al. performed a metanalysis of the com-
bined data from 64 studies (or cohorts) across Europe 
and the United States that had a total of 126,559 persons 
of European ancestry (PoEA). Using a standard GWAS 
significance level of p ≤ 5 × 10−8, they reported one SNP 
of genome-wide significance for EA. By 2016, using a 
sample of 293,723 PoEA, researchers reported 74 SNPs 
of genome-wide significance (Okbay et al., 2016). In 
2018, with a combined sample of more than 1 million 
PoEA from 71 different GWASs and combined microar-
ray data for approximately 10 million SNPs, researchers 
reported the identification of 1,271 SNPs of genome-
wide significance ( J. J. Lee et al., 2018). A similar pat-
tern has been observed for other behavioral attributes 
(Plomin & von Stumm, 2018). And J. J. Lee et al. (2018) 
reported that, in line with Fisher’s model, the median 
effect size of the 1,271 lead SNPs correspond to risk of 
only 1.7 weeks of schooling per allele and, taken 
together, they accounted for only 3.86% of the variance 
in EA.

Linkage disequilibrium

Basics. According to Mendel’s law of independent 
assortment, any given allele will be inherited indepen-
dently of any other allele. For example, if someone inher-
its the SNP allele with an A at a specific position on a 
particular chromosome, this tells us nothing about the 
allele they will inherit on the same chromosome 100 base 
pairs (bp) away. In reality, SNPs that are “close” to each 
other tend to be inherited together because the entire 
segment of DNA on which they are located is inherited 
as a single piece. This segment of DNA is referred to as a 
haplotype. The genotypes of different SNPs within a hap-
lotype tend to be inherited together. Suppose that two 
SNPs are located 1000 bp (or 1 kilobase [kb]) apart in a 
haplotype. In SNP rs1000,3 the nucleotides G or T occur, 
and in SNP rs2000, the nucleotides C or G occur. Sup-
pose we know that the genotype of rs1000 is T. On this 
basis, we can infer that the genotype of rs2000 is G (with 
varying degrees of probability). This nonrandom associa-
tion of alleles at two different loci in a haplotype is 
known as linkage disequilibrium (LD), and it plays a 
critical role in GWASs.

The alleles of genome-wide significance that 
researchers associate with an attribute, including the 
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1,271 SNPS of genome-wide significance identified by 
J. J. Lee et al. (2018), are not “causal.” Instead, they are 
SNPs assumed to be in LD with causal-risk alleles.

A current genome assay typically checks a person’s 
DNA sequences for a million preidentified SNPs called 
marker SNPs. Haplotype maps have been constructed 
across the genomes of different populations that tell 
researchers which SNPs in a particular region are likely 
in LD. Given the genotype of the marker SNPs, research-
ers can infer the genotype of many more SNPs (or other 
forms of genetic variation) known (or presumed) to be 
in LD with them. This process, known as genotype 
imputation, is used to improve both coverage and 
power of a GWAS by inferring the alleles of ungeno-
typed SNPs according to the LD patterns derived from 
directly genotyped marker SNPs (Marchini & Howie, 
2010). This allows researchers to examine large seg-
ments of the genome without having to genotype each 
of the three billion pairs of DNA nucleotides.

If researchers find a “hit” or correlation for a marker 
SNP, the assumption is generally that the marker SNP 
itself is not “causal” (Bush & Moore, 2012). Instead, an 
unknown genetic variant in LD with the marker SNP is 
deemed causal. The marker SNP serves as a proxy for 
the presumed causal genetic variant. To say that a 
genetic variant is causal means, in this context, that it 
has some physiological effect on phenotypic risk (i.e., 
it is a cause of phenotypic risk). Perhaps it causes a 
slight change in the transcription rate of a given gene 
or results in an altered form of a protein. How the 
causal variant influences risk is not known because the 
causal variant itself is not known. Therefore, a distinc-
tion can be drawn between marker SNPs and causal 
alleles or causal-risk alleles. Regarding risk, a marker 
SNP could also be referred to as a risk allele—not 
because it has any effect on phenotypic risk but because 
it is in LD with a causal-risk allele that does influence 
phenotypic risk.

Whether any two SNPs are in LD is a matter of prob-
ability, not certainty (and, as we shall see below, LD 
can vary by population). Researchers use as a measure 
of the strength of correlation between any two marker 
SNPs either a coefficient of LD (D′) or, more commonly, 
an r2, which is equivalent to the Pearson correlation 
coefficient (a measure of the strength of the linear 
relationship between two variables). LD can range from 
0 (no correlation) to 1 (perfect LD; Fig. 1).

Complexities. One difficulty regarding LD is that mul-
tiple marker SNPs that achieve genome-wide significance 
could be in LD with the same unknown causal allele and 
with each other. If all of them were counted as having 
genome-wide significance, this would result in over-
counting. A common method for tackling this problem is 

called clumping. Marker SNPs in LD are thinned, and 
only the marker SNP with the lowest p value is retained. 
After this is done for every region of LD, remaining 
marker SNPs are assumed to be independent (i.e., not in 
LD). A criticism of clumping is that researchers typically 
select an arbitrarily chosen threshold for determining 
whether marker SNPs are in LD in the first place (Choi 
et al., 2020). Other forms of clumping involve a second 
stage in which lead SNPs that are physically close to each 
other are merged and considered to be a single locus. A 
second common approach is to permit the inclusion of 
SNPs in LD but to adjust (or shrink) effect estimates on 
the basis of their correlation structure—for example, two 
correlated SNPs would both be preserved, but their 
respective effect estimates would be downsized com-
mensurate with the degree of correlation. There is now a 
proliferation of computational tools designed to account 
for LD, including the software LDpred, a Bayesian method 
that weights each SNP by (an approximation to) the pos-
terior mean of its conditional effect, given other SNPs, 
and incorporates estimations based on observed LD pat-
terns in a population reference sample (Vilhjalmsson 
et al., 2015).

Despite computational tools, estimating 
LD remains a significant challenge

Measures of LD are particularly sensitive to population-
based differences in allele frequencies and the choice 
of a cutoff for minor allele frequency—that is, the level 
at which the less frequently occurring [minor] allele in 
a population is deemed rare and excluded from the 
analysis (Linck & Battey, 2019). Furthermore, research-
ers generally assume that to be in LD lead SNPs must 
be located no more than, for example, 50 kb apart. 
However, in what is known as long-range LD (LRLD), 
LD spans regions more than 1 Mb (1,000 kb) apart on 
a chromosome. The most familiar example of LRLD 
concerns a region of chromosome 6 known as the major 
histocompatibility complex, which plays a key role in 
the immune system, in which thousands of SNPs exhibit 
LRLD across a region greater than 1.5 Mb. Analysis has 
shown that LRLD of more than 5 Mb is common across 
the human genome (Nelson et al., 2020; Park, 2019). If 
LRLD is not considered, the result can be a significant 
overcounting of marker SNPs presumed to be indepen-
dent (i.e., not in LD). It is worth noting that LRLD can 
be a sign of epistasis (G × G), a phenomenon that is 
hard to accommodate in an additive model (C. Zhang 
et al., 2017).

Further difficulties in estimating LD occur because 
they confound the assumption on which LD depends: 
that people have identical genomes in the somatic cells 
of their bodies. These difficulties include: De novo 
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copy-number variations (CNVs) and duplications or 
deletions of segments of DNA ranging from more than 
50 bp to several megabases. Such variations are esti-
mated to encompass up to 9.5% of the human genome 
(Iourov et al., 2019; Zarrei et al., 2015). They are de 
novo because they are not inherited and can be unique 
to every individual. De novo copy-number variations 
can result in the duplication or deletion of whole genes. 
Researchers have identified approximately 100 genes 

for which both copies can be deleted in healthy persons 
without producing apparent phenotypic consequences. 
There is also extrachromosomal circular DNA, which 
are closed circles of DNA derived from chromosomal 
DNA that range in size from less than 100 bp to several 
kilobases and typically contain multiple active genes. 
Up to 10,000 extrachromosomal circular DNAs per cell 
have been identified in varying amounts and sizes and 
with different DNA sequences in all cell types (Ain et al., 

Fig. 1. Representation of two haplotypes on chromosome 1. The region 1q32 on the 
chromosome (to the right) is amplified below it. The location and the two forms of each 
single-nucleotide polymorphism (SNP) are shown. For example, SNP rs2073186 occurs as 
either a C or a T. It is located in an intron, a noncoding part of a gene. SNP rs2243191 
occurs as a C or T. It is located in a protein-coding region of a gene and causes a single 
amino acid (the building block of proteins) to change from S (serine) to F (phenylalanine). 
Below this amplification are shown the three genes in which the SNPs are located—IL-19, 
IL-20, and IL-24—as well as intergenic regions (in white). Shown below that are two linkage 
disequilibrium (LD) blocks (or haplotypes) in region 1q32. The numbers 1 to 13 correspond 
to the SNPs shown above. At the bottom is a grid showing the degree of LD between each 
pair among the 13 SNPs. The numbers in the boxes are coefficients of LD (D′), which range 
from 0 to 1. For example, D′ between SNP 1 (rs2073136) and SNP 3 (rs2243188) is .99, which 
indicates high LD. By contrast, D′ between SNP 6 (rs2981572) and SNP 9 (rs1518108) is only 
.07. Reprinted by permission from Springer: Genes & Immunity (Possible relations between 
the polymorphisms of the cytokines IL-19, IL-20 and IL-24 and plaque-type psoriasis. Kõks, 
S., Kingo, K., Vabrit, K., Rätsep, R., Karelson, M., Silm, H., & Vasar, E. Genes & Immunity, 
6(5), 407–415. https://doi.org/10.1038/sj.gene.6364216), Copyright 2005.

https://doi.org/10.1038/sj.gene.6364216
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2020); polyploidy, which occurs when cells have more 
than two complete sets of chromosomes, is found, to 
varying degrees, in normal human cells and tissues. For 
example, almost all adult ventricular cardiomyocytes, 
which form the muscle wall of the heart, are polyploid, 
typically containing four complete sets of chromosomes 
(Gan et al., 2020). More than 50% of liver cells (hepa-
tocytes) exhibit polyploidy (S. Zhang et al., 2019), and 
most large bone marrow cells (megakaryocytes) contain 
up to 32 sets of chromosomes (Mazzi et al., 2018). The 
result of these and other phenomena is widespread 
somatic mosaicism—the existence of different genomes 
in different cells of the body. Somatic mosaicism is now 
known to be the normal human condition and is preva-
lent in the brain (Breuss, 2020; Kaeser & Chun, 2020; 
B. Zhao, Wu, et al., 2019).

LD and causal inference. Given that postulated 
causal-risk alleles could be any alleles that are in LD with 
the marker SNPs, one would assume that nothing more 
could be said concerning biological causation. However, 
this has not stopped researchers from proposing biologi-
cal pathways based on specific alleles. For example, J. J. 
Lee et al. (2018) observed that “relative to other genes, 
genes near our lead SNPs were overwhelmingly enriched 
for expression in the central nervous system [and] impli-
cate genes involved in brain-development processes and 
neuron-to-neuron communication” (p. 1114). It is not 
clear what the authors mean here by “near,” “enriched,” 
or “implicated.” If by “near,” the authors mean within 50 
to 500 kb of a marker SNP, they have failed to consider 
the possibility of LRLD. Furthermore, as far as being 
“overwhelmingly enriched” is concerned, there is noth-
ing particularly distinctive about a gene being expressed 
in the brain. In-depth gene expression profiling has 
revealed that 84% of ~20,000 protein-coding genes are 
expressed in various regions of the human brain (Negi & 
Guda, 2017). This makes it likely that, by chance alone, 
SNPs that are “near” genes will be near genes whose pro-
tein products are expressed in the brain.

J. J. Lee et al. (2018) explained that they employed 
a “fine-mapping” statistical software program to identify 
127 genes as being likely to contain causal SNPs in LD 
with some of their lead marker SNPs. They drew atten-
tion to one of these genes, CACNA1H, which, as the 
authors noted, is used to synthesize a calcium-channel 
protein that plays a role in neuronal excitability. The 
authors did not mention other genes “prioritized” by 
their software (Lee et al., Supplementary Tables) such 
as PPIP5K2, mutations of which have been associated 
with various forms of deafness; PRKAG2, transcribed 
to synthesize a protein involved in responding to 
energy demands in cardiac muscle and associated with 
various forms of heart disease; EPB41L3, transcribed to 

synthesize erythrocyte membrane protein and impli-
cated in several forms of cancer; as well as many genes 
of unknown function. And CACNA1H itself is also highly 
expressed in the kidney, liver, and heart and has been 
associated with certain forms of hypertension (Daniil 
et al., 2016). Applying the same or similar techniques 
and reasoning to GWASs of intelligence, Hill, Marioni, 
et al. noted (2019) that they “found evidence that neu-
rogenesis and myelination—as well as genes expressed 
in the synapse, and those involved in the regulation of 
the nervous system—may explain some of the biologi-
cal differences in intelligence” (p. 169), whereas Ye et al. 
(2020), drew attention to the brain-expressed genes in 
their “enrichment set” and the role of neurogenesis in 
risky behavior.

These researchers are cherry-picking genes “near” 
marker SNPs, the functions of which they believe 
accord with the nature of EA, intelligence, or risky 
behavior (i.e., all of these in some way involve the brain 
and neurons). This is a common practice, but it is not 
clear that any of this amounts to evidence. To get a 
sense of just how rudimentary such reasoning is, con-
sider the growing body of evidence that the gut micro-
biome plays an essential role in brain development 
(Gao et al., 2020; Lu & Claud, 2019; C. R. Martin et al., 
2018; Zhu et al., 2020). Perhaps relevant risk alleles are 
associated with genes (e.g., FUT2) that appear to affect 
microbiome composition in the gut (Kurilshikov et al., 
2021).

Infinitesimal effects

What is perhaps most misleading about highlighting 
specific SNPs and using them to construct a schema of 
genetic neurodevelopmental etiology (of risk) is that 
according to researchers’ assumptions, the effect of any 
one of these SNPs on risk is minuscule (e.g., according 
to J. J. Lee et al. [2018], the marker SNP rs4860418 is 
associated with a .0071-unit decrease in genetic risk of 
EA. This effect size presumably matches that of the 
unknown causal-risk allele with which it is in LD). 
These effects are so small that it is inconceivable that 
the role of any of the unknown causal genetic variants 
could ever be demonstrated or analyzed experimentally. 
Of course, one could “knock out” the proposed gene 
in a mouse or find a family whose members lack the 
gene because of some rare condition and then connect 
the observed abnormal behavior with the phenotype 
under consideration. But this would simply be a way 
of distorting the findings by transforming what is insig-
nificant and one effect among millions into the sole 
main effect.

To what extent is it biologically plausible, or even 
coherent, to assume that the cause of such a minuscule 
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effect can be traced back to specific inherited DNA 
sequences? The problem with such an assumption is 
that in a complex biological system, the signal or sig-
nature of a minuscule effect will be irretrievably lost in 
a sea of effects. As the effect size of variation in specific 
DNA sequences diminishes, the effect size of all the 
other processes normally involved in shaping gene 
expression grows, including the entire developmental 
process. Such diminutive allelic effect sizes make sense 
only in the statistical realm, not the biological realm.

Replication

Given the assumption of a single set or core set of 
genetic risk factors for a given phenotype (Maier et al., 
2018), it is important to consider whether identification 
of lead marker SNPs for a given attribute is consistently 
replicated across studies. Let us assume that in this 
context, “lead” means a marker SNP of genome-wide 
significance (at p ≤ 5 × 10–8) that has a p value lower 
than those of all the other marker SNPs with which it 
is assumed to be in LD (according to whatever statistical 
procedures are used in this determination).

Consider eight large metanalyses of EA and/or intel-
ligence/cognitive ability: (Davies et al., 2018; Hill, Marioni, 
et al., 2019; Kichaev et al., 2019; Lam et al., 2017, 2019; 
J. J. Lee et al., 2018; Okbay et al., 2016; Savage et al., 
2018). Because EA is usually considered a proxy vari-
able for intelligence, combining intelligence and EA 
should present no problems. Limiting ourselves to the 
unique marker SNPs found to have genome-wide sig-
nificance in each study at p ≤ 5 × 10−8 yields 6,272 SNPs 
total across the eight studies. Of these, 5432, or 93.44%, 
occurred in only one study. (Table 1; see also the Sup-
plemental Tables available online).4

This poor record of replication of purportedly inde-
pendent and lead marker SNPs of genome-wide signifi-
cance goes largely unnoticed, even though these same 
SNPs are often used to construct schemas of genetic 
causation of risk and PRSs.

PRSs

Basics

A PRS is intended to be a single-value estimate of a 
person’s genetic risk for an attribute (Choi et al., 2020). 
Take the example of constructing a PRS for EA. Suppose 
that a given GWAS (or combination of GWASs) contains 
information on 1 million marker SNPs for 100,000 per-
sons as well as information on years of schooling com-
pleted. For each of the 100,000 members of the sample, 
the data would show the respondent’s EA and which 
SNP allele they possess for each of one million marker 
SNPs on a chip array. All these individual data could 
then be combined into “summary statistics,” which pres-
ent the GWAS results in the form of population aver-
ages. For each SNP, the summary statistics identify the 
“effect” allele (A1; i.e., the marker SNP that shows a 
correlation with EA, which can be either positive or 
negative), the “no-effect” allele (A2), the frequency of 
A1 in the population, the average effect size of A1 on 
EA (an odds ratio for a dichotomous trait or a β for a 
quantitative trait), the standard error (SE), and the  
p value for the association. See Table 2 for an example.

Suppose we wanted to construct a newborn’s PRS 
for EA (specifically, her odds of completing high 
school), and suppose her genotype for marker SNP 
rs4686944 in Table 2 was GG, which is two “effect” or 
“risk” alleles. On the basis of our summary statistics, 
we would multiply the effect size of this allele (0.02041) 
by the number of risk alleles she has (2). We would 
repeat this process for each of her 1 million marker 
SNPs (after accounting for LD) that showed an associa-
tion with completion of high school and sum the results. 
In theory, the resulting value would tell us the new-
born’s “genetic risk” for higher or lower EA. In 2018, 
Plomin and von Stumm wrote as if this capability was 
imminent:

IQ GPSs [genetic polygenic score; equivalent to 
PRS] will be used to predict individuals’ genetic 
propensity to learn, reason and solve problems, 
not only in research but also in society, as direct 
to consumer genomic services provide GPS infor-
mation that goes beyond single gene and ancestry 
information. We predict that IQ GPSs will become 
routinely available from direct-to-consumer com-
panies along with hundreds of other medical and 
psychological GPSs that can be extracted from 
genome-wide genotyping on SNP chips. (p. 155)

At present, however, PRSs for behavior have no indi-
vidual predictive value whatsoever (Morris et al., 2020), 
and whether any PRS for any phenotype has individual 
predictive value is an open question. Instead, their 

Table 1. Lead SNPs for Intelligence and Educational 
Attainment Identified in Studies

Number of studies
Number of SNPs

(N = 6,272) SNPs (%)

1 5,432 93.44%
2  325  5.59%
3   43  0.74%
4   11  0.19%
5    2  0.03%
6    1  0.02%
7    0  0.00%
8    0  0.00%
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ostensible predictive value concerns populations: A PRS 
is said to be predictive if the average PRS in a case 
population is higher than the average PRS in a control 
population, or if the average PRS of those, for example, 
in the lowest decile of EA is lower than those in the 
highest decile.

Plomin and von Stumm (2018) made these points 
clear when discussing a PRS they constructed to predict 
students’ performance on a United Kingdom–wide 
examination, the General Certificate of Secondary Edu-
cation (GCSE), administered at the end of compulsory 
education at age 16 years. According to the authors, a 
scatterplot between GCSE scores and the PRS (Fig. 2a) 
shows “the difficulty of predicting individual outcomes 
when the correlation is modest (0.30 in this example)” 
(Plomin & von Stumm, 2018, p. 156). Squaring this cor-
relation, they estimated that the PRS predicted 9% of the 
variance in risk in their study population but noted that

Although higher [PRSs] can be seen to predict 
higher GCSE scores on average, there is great 
variability between individuals. . . . Individuals 
within the lowest and highest [PRS] deciles vary 
widely in school achievement. . . . The overlap in 
the two distributions is 61%. (p. 156)

However, on a more optimistic note, they comment 
regarding their study sample “EA2” (Fig. 2c):

Despite this variability, powerful predictions can 
be made at the extremes. . . . Specifically, the 
average school achievement of individuals in the 
lowest EA2 GPS decile is at the 28th percentile. 
For the highest EA2 GPS decile, the average school 
achievement is at the 68th percentile. (p. 156)

It is common practice to divide a PRS into lowest 
and highest deciles or quintiles and then note what 
seems like an impressive difference in the mean preva-
lence between the lowest and highest decile or quintile. 
But what may seem like an impressive difference is 
simply a general property of small correlations: Given 
large enough sample sizes, looking at the extremes will 
produce what appear to be large differences, even 
though the magnitude of the relationship is small. 
Finally, Plomin and von Stumm (2018), reflecting on 

the poor individual predictive power of their PRS, have 
recourse to a familiar refrain: “As bigger and better GPSs 
emerge, the predictive power will increase” (p. 156).

Training the score. The construction of a PRS begins, 
as noted, with the summary statistics from various GWASs, 
referred to as the discovery sample. The score is then 
further developed on a training sample, which must be 
entirely separate from the discovery sample. (A good 
deal of confusion is generated by the lack of consistent 
terminology for these samples. What is referred to here 
as the training sample is also called, variously, the target, 
validation, prediction, or replication sample.) The objec-
tive of researchers, apparently, is to modify how they 
construct the PRS to achieve as high an R2 in the training 
sample as possible. R2, or the incremental R2 statistic, is a 
statistical measure representing the proportion of the 
variance for a dependent variable (in this case, risk of a 
phenotype of interest) that is explained by an indepen-
dent variable or variables (marker SNPs) in a regression 
model. The higher the R2, the more of the variation in the 
data the PRS explains.

Researchers have an enormous amount of freedom 
in determining how to construct a PRS to achieve the 
largest possible R2. Consider the process of clumping, 
mentioned above. To achieve the highest R2, it is stan-
dard practice for researchers to modify both the LD r2 
thresholds (i.e., the level of correlation at which two 
SNPs are considered in LD), and the clumping window, 
the number of base pairs within which LD is considered 
possible (Prive et al., 2019). Thus, researchers might try 
out different combinations of r2 thresholds (e.g., 0.01, 
0.05, 0.1, 0.2, 0.5, 0.8, or 0.95) and clumping windows 
(e.g., 50, 100, 200, or 500 kb).

One might assume that only SNPs of genome-wide 
significance would be included in a PRS. However, it 
is now standard practice for researchers to try out dif-
ferent p-value thresholds for the inclusion of marker 
SNPs (A. R. Martin et al., 2019):

The standard PRS approach is to calculate several 
scores from SNPs meeting various p-value thresh-
olds on a log scale ranging from genome-wide 
significance (p < 5e-8) to all independent SNPs  
(p < 1) [or p = 1], then compute and report accu-
racy for each PRS. In nearly all modern GWAS of 

Table 2. Simplified Summary Statistics for a Single SNP Allele From a Hypothetical Study of 
Educational Attainment

Marker name (SNP)
A1

(Effect allele) A2
A1

Frequency Effect size SE p

rs4686944 G T 0.02041 0.029 0.01087 .0441
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complex traits, PRS computed using permissive 
p-value thresholds that aggregate the effects of 
1,000s to 100,000s of independent SNPs typically 
explain more phenotypic variation than loci 
strictly meeting genome-wide significance. (p. 4)

In line with this, J. J. Lee et al. (2018, Supplementary 
Note, p. 128) noted that in constructing their PRS of 
EA, they tried out four different p-value thresholds: p ≤ 
5 × 10−8, 5 × 10−5, 5 × 10−3, and 1, and that their R2 
increased from .032 at p ≤ 5 × 10−8 to 9.4% at p ≤ 1. 
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Fig. 2. Polygenic risk scores (PRSs) and individual versus population prediction. The scatterplot in (a) shows the relationship between 
educational attainment (EA) PRS percentiles and General Certificate of Secondary Education (GCSE) score percentiles. “EA2” refers to a 
specific PRS in Plomin and von Stumm (2018). The graph in (b) shows that the population distribution of PRS is normally distributed; the 
average PRS of those who score higher on the GCSE is slightly higher. On this basis, the authors predict that their PRS predicts 9% of the 
variance in genetic risk. The overlap in the two distributions is 61%. In the graph in (c), the sample was divided into 10 equal-sized groups 
(deciles) on the basis of EA2 PRS and shows the relationship between average EA2 PRSs and average GCSE score. Reprinted by permission 
from Springer: Nature Reviews Genetics (The new genetics of intelligence. Plomin, R., & von Stumm, S. Nature Reviews Genetics, 19(3), 
148–159. https://doi.org/10.1038/nrg.2017.104), Copyright 2018.

https://doi.org/10.1038/nrg.2017.104


“Golden Age” of Behavior Genetics? 11

They were able to achieve a yet higher R2 of .114—the 
figure they ended up using in the end—when in addi-
tion to using p ≤ 1, they switched from removing SNPs 
in LD with each other to using the software LDpred. 
(When the authors controlled for household income 
and the EA of the mother or father, the score’s incre-
mental R2 dropped to .046).

One might object that a significance threshold of p = 1 
is nonsensical, but in the present context, it indicates 
(or entails) that after dealing with LD, all the remaining 
marker SNPs will be included in the PRS regardless of 
their statistical significance. Is this not an abandonment 
of the idea of statistical significance altogether while 
undertaking massive data mining? However, as the say-
ing goes, the proof is in the pudding. Therefore, choos-
ing a significance threshold of p ≤ 1 (i.e., adopting no 
significance threshold) is justified, in the first instance, 
by the fact that it appears to work. It enables research-
ers to achieve a higher R2. But it also accords with the 
narrative of infinite infinitesimal alleles. Because the 
effects of individual SNPs are minuscule, the Bonferroni 
correction—or, as it turns out, any correction—is too 
stringent. Furthermore, what is statistically significant is 
not the effect of any individual SNP but their combined 
effect. Doubtless, any PRS constructed in this manner 
will contain many marker SNPs that do not affect phe-
notypic risk, but by including many more that do and 
otherwise would have been excluded, abandoning sig-
nificance thresholds is justified.

There are many, many other decisions that research-
ers can make in their quest for the highest R2, including 
trying different algorithms embodied in various software 
programs to determine the weighting of individual SNPs, 
how to account for “winner’s curse” (the phenomenon 
in which estimates of the genetic effect based on new 
association findings tend to be upwardly biased), which 
cutoffs to use for minor allele frequency, or which pro-
grams to use to determine genotype imputation.

Model overfitting. All of this “freedom” on the part of 
researchers is a recipe for model overfitting (M. D. Lee et al., 
2019; Mertens & Krypotos, 2019; Simmons et  al., 2011). 
When researchers have so many “degrees of freedom”—
that is, when they are free to try so many different analytic 
alternatives and value thresholds to achieve their preferred 
result, including setting significance thresholds—the likeli-
hood of creating a manufactured rather than real statistical 
correlation is significant. All data sets have random quirks; 
an overfit model will incorporate these quirks to such an 
extent that the model explains the random error present in 
the data. Hence, an overfit model will not be generalizable 
because it describes the random error in the data rather 
than the relationships between variables. Ultimately, the 
regression coefficients represent noise rather than genuine 
relationships in the population. Inflated R2 values are a sign 

of overfit models, and overfit models are a common occur-
rence when researchers chase a high R2.

The problem of overfitting is exacerbated by the fact 
that in constructing PRSs, there are more predictors, in 
the form of individual SNPs, than the number of persons 
in the sample. For example, the study of J. J. Lee et al. 
(2018) has a sample size (N) of 1.1 million and 7.1 million 
predictors (i.e., SNPs). When there are more predictors 
than samples in the data set, you are confronted with a 
problem of “big-p, little-n” (p > > n), also referred to as 
the “curse of dimensionality” (CoD; Altman & Krzywinski, 
2018). Overfitting is an aspect of CoD. It occurs because 
the flexibility of prediction equations is in part deter-
mined by the number of variables involved (Lever et al., 
2016). With increased flexibility, prediction and classifica-
tion rules adapt to both the patterns in the population 
and the random idiosyncrasies of the training sample. 
Dimension-reduction methods such as principal compo-
nent analysis can help to reduce dimensionality (see the 
Principal Components Analysis and LMM section, below) 
but may themselves be affected by CoD.

Estimating predictive performance is 
inferior to observing it in the real world

It is for these reasons that, according to the “gold stan-
dard,” before any claims that a PRS actually predicts any-
thing can be made, a PRS developed on a training sample 
should be tested on a third sample entirely separate from 
both the discovery and training samples (Choi et  al., 
2020). Frequently, researchers do not do this. Sometimes, 
they will remove one or two study “cohorts” from their 
discovery sample (which consists of numerous cohorts), 
use these excluded cohorts as their training sample, and 
publish results derived from the training sample. To be 
sure, there are different statistical techniques designed to 
deal with the problem of model overfitting in the absence 
of a third independent sample and to estimate how accu-
rately a predictive model will perform in practice. Cross-
validation, for example, uses a single training sample that 
is then split into smaller “training” and “validation” subsets 
(Duncan et al., 2019). In discussing a recent study of the 
performance of cross-validation that was based on real-
world data, Bauder et al. (2019) noted:

In real-world production applications, it is critical 
to establish a model’s usefulness by validating it 
on completely new input data and not just using 
the cross-validation results on a single historical 
data set. We present results for both evaluation 
methods, to include performance comparisons 
[and] find that using the separate training and [vali-
dation] sets generally outperforms cross-validation, 
indicating a better real-world model performance 
evaluation. (p. 19)
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There is growing evidence that PRSs are overfit models. 
For example, Mostafavi et al. (2020) demonstrated that 
“the portability of a polygenic risk score can vary mark-
edly depending on sample characteristics of both the 
original GWAS and the prediction set, and that this 
variation in prediction accuracy can be substantial”  
(p. 6). Variation in the samples for such things as the 
percentage of male versus female participants or the 
percentage of persons in various age or socioeconomic 
categories were all shown to substantially affect PRS 
accuracy.

Population Genetic Differences

Basics

In all the studies considered thus far, researchers 
employed data limited to persons of European ancestry. 
To be sure, PRSs have been constructed on the basis of 
discovery and training samples composed of persons of 
“Asian” or “African” descent. But care is taken to avoid 
“mixed” populations or, for example, using data derived 
from a GWAS of members of one ancestral group to 
construct a PRS for members of a different ancestral 
group. As J. J. Lee et al. (2018) note of their study:

Because the discovery sample used to construct 
the score consisted of people of European ances-
try, we would not expect the predictive power of 
our score to be as high in other ancestry groups. 
Indeed, when . . . used to predict EA in a sample 
of African-Americans . . . the score only has an 
incremental R2 of 1.6%, implying an attenuation 
of 85%. (p. 1115)

Researchers typically ascribe such R2 attenuation to 
differences in genetic population characteristics between 
ancestral groups—differences in allele frequencies, hap-
lotypes, degree of LD, and degree of genetic diversity 
(Duncan et al., 2019). These differences are the result of 
different population histories and are influenced by such 
phenomena as differences in migratory patterns, founder 
events, and population bottlenecks (loss of genetic varia-
tion that occurs when a new population is established 
by a very small number of people from a larger popula-
tion), population expansions, relative population isola-
tion, endogamy, inbreeding, adaptive pressures, and 
genetic drift (a random change in allele frequencies), to 
name a few. Genetic population characteristics are highly 
correlated with geography, although the sharing of cer-
tain allelic frequencies between populations need not 
entail a shared ancestry or geographic origin. Although 
researchers are aware of the existence of population 

genetic differences between as well as within ancestral 
populations (as typically defined), they believe they can 
effectively handle the latter (but not the former).

A population is structured when it contains subpopu-
lations often, but not exclusively, distinguished by geo-
graphic location that exhibit systematic differences in 
population genetic characteristics (or allele frequen-
cies). Persons of European ancestry are a structured 
population at every level, and the more fine-grained 
one’s analysis, the more that nested levels of population 
structure appear. For example, the ancestral population 
of the United Kingdom is composed of 17 distinct pop-
ulation “clusters” that are highly localized and differ in 
their population genetic characteristics (Leslie et  al., 
2015). Structured populations, which are most popula-
tions, are an omnipresent threat to the validity of 
genetic association studies because of population 
stratification.

Population stratification

Population stratification occurs when researchers mis-
take population genetic differences in allele frequencies 
for differences between case subjects and control sub-
jects in risk alleles. Consider a simplified example—
simplified in that it involves only one allele when a PRS 
can involve millions. Because of population genetic 
differences, the Roma have a higher percentage of the 
CYP2C19*2 allele (Petrovic et al., 2020). Suppose our 
phenotype was EA and the Roma were overrepresented 
in our study population. The Roma have, on average, 
much lower EA than other Europeans (Eurostat, n.d.). 
Hence, we might conclude that CYP2C19*2 is a risk 
allele for low EA. However, any association between 
CYP2C19*2 and EA would be the result of population 
stratification. Were we, for example, to exclude the 
Roma altogether from our sample, any correlation 
between CYP2C19*2 and EA would disappear (assum-
ing, that is, that there were no other ancestral popula-
tions that exhibited similar population differences in 
CYP2C19*2 frequencies). The EA of the Roma are so 
low not because they have a high frequency of the 
CYP2C19*2 allele but because of their history as a per-
secuted and excluded minority (Van den Bogaert, 2018).

The two most widely used statistical methods for 
dealing with population structure are principal compo-
nents analysis (PCA) and linear mixed modeling (LMM; 
Y. Zhang & Pan, 2015). PCA is used to identify patterns 
or “axes of variation” that explain the greatest amount 
of variance in allele (i.e., SNP) frequency in the sample. 
In a GWAS, what typically accounts for the greatest 
amount of variation in allelic frequency (the first prin-
cipal component) is not the attribute of interest but the 
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ancestries of the participants, which often correspond 
to geographical regions. Researchers adjust genotypes 
and phenotypes by amounts attributable to ancestry 
along each axis. It is common for researchers to do a 
PCA on the entire set of genotype data, then use the 
first 5, 10, 20, or more principal components as covari-
ates in the association model. An alternative widely 
used approach is LMM, which incorporates both fixed 
and random effects, population structure being treated 
as a random effect.

There is strong evidence that neither of these 
approaches solves the problem of population stratifica-
tion. For example, in several different studies, researchers 
reported that the average PRS for height increased from 
south-to-north across Europe (i.e., exhibited a “latitudinal 
cline”), paralleling average population differences in 
height from Italy to the Netherlands (Berg & Coop, 2014; 
Racimo et al., 2018; Robinson et al., 2015; Turchin et al., 
2012; Zoledziewska et al., 2015). The results of these 
studies were highly touted not only as multiply replicated 
PRSs for height but also as an example of polygenic 
adaptation. Most of these studies were based on data 
assembled by an international collaborative effort known 
as the Genetic Investigation of ANthropometric Traits 
(GIANT) Consortium, consisting of the combined sum-
mary statistics from 79 individual GWASs totaling 253,288 
persons of European ancestry from across Europe. In 
subsequent studies (Berg et al., 2019; Sohail et al., 2019), 
researchers attempted to replicate these findings using a 
larger sample from the U.K. Biobank.

The U.K. Biobank contains GWAS and “health and 
well-being” data of 500,000 volunteer participants from 
the United Kingdom. Researchers limited themselves to 
participants who self-identified as being of “white Brit-
ish ancestry” (N = 336,474). This study population was 
larger and more homogeneous, in terms of ancestry, 
than the population that constituted the GIANT Con-
sortium from which the PRSs for height had been origi-
nally derived. Researchers failed to replicate the original 
findings. As Berg et al. (2019) noted of their results, 
“what once appeared an ironclad example of popula-
tion genetic evidence for polygenic adaptation now 
lacks any strong support” (p. 14). Both Berg et al. 
(2019) and Sohail et al. (2019) concluded that the dif-
ferences in the PRSs for height were picking up ances-
tral population differences in allele frequencies 
between, for example, the Italians and the Swedes, that 
had nothing to do with height. And they knew this 
because these scores did not identify differences in 
height (or at the very least, were significantly attenu-
ated) in a more homogeneous population that con-
tained neither Italians nor Swedes. Of their findings, 
Berg et al. (2019) commented that “methods for 

correcting for population stratification in GWAS may 
not always be sufficient for polygenic trait analyses” 
(abstract).

Doubts concerning the effectiveness of current meth-
odologies in dealing with population stratification have 
continued. For example, the U.K. Biobank, a large seg-
ment of which has been assumed to represent a single 
relatively homogeneous population of persons of “white 
British ancestry,” itself exhibits population structure 
(Cook et al., 2020). This is not surprising given that, as 
noted above, “white British ancestry” does not constitute 
a structure-free population. Both Cook et al. (2020) and 
Haworth et al. (2019), showed that PRSs based on GWAS 
data from the U.K. Biobank for traits including education, 
income, body mass index (BMI), hypertension, smoking, 
and alcohol consumption were correlated with birth 
location. These associations with geography persisted 
even after they used PCA involving up to 100 principal 
components (Zaidi & Mathieson, 2020) and LMM. Dif-
ferences in all these attributes—education, income, BMI, 
hypertension, smoking, and alcohol consumption—and 
many more are known to vary by geographic region 
throughout Great Britain. At the same time, allele fre-
quencies are known to differ throughout Great Britain 
by geographic region because of differences in ancestral 
populations, which provides a source of covariance 
between genotype and attribute that will lead to popula-
tion stratification. As Haworth et al. note (2019), “this 
phenomenon is important, both as a source of ecologi-
cal-level covariance between genotypes and geographi-
cally heterogeneous complex traits and because of its 
apparent persistence across different analytical contexts 
and modes of statistical adjustment” (p. 6),

Researchers uncovered the same problem in analyz-
ing PRSs for coronary artery disease, rheumatoid arthri-
tis, schizophrenia, waist–hip ratio, body-mass index, 
and height in a Finnish population (Kerminen et  al., 
2019). Ancestral Finns are a population that, given the 
nature of their migratory history and relative isolation 
from the rest of Europe, one would expect to be more 
genetically homogeneous than “whites of British ances-
try” (Kaariainen et al., 2017). Nonetheless, even after 
employing PCA and LLM, the authors observed strong 
correlations between the geographic distribution of the 
PRSs and Finnish population structure that runs from 
southwest to northeast.

Sibship studies

Researchers generally assume that studies of siblings 
from the same parents are immune to population strati-
fication because genetic differences between siblings 
are due to the random partitioning of parental alleles 
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(Selzam et al., 2019). Hence, it is common for research-
ers to attempt to replicate GWASs and PRSs using family 
studies. Many studies have shown that when a PRS score 
derived from a general-population GWAS discovery 
sample is applied to a sibling population, the R2 signifi-
cantly declines ( J. J. Lee et al., 2018; Mostafavi et al., 
2020; Trejo & Domingue, 2018). For example, J. J. Lee 
et al. (2018) noted a decline of 40% in their PRS when 
applied to a sibling study population. There have been 
numerous and at times convoluted attempts to explain 
this phenomenon, but the most straightforward is, in 
the words of Lello et al. (2020), that “at least some of 
the observed power in polygenic prediction among non-
sibling people comes from effects such as subtle popu-
lation stratification (perhaps correlated to environmental 
conditions or family socio-economic status)” (p. 9).

Zaidi and Mathieson (2020) demonstrated that if 
researchers use data from a general population GWAS 
discovery sample and develop a PRS using a sibling 
training sample, population stratification persists. 
Researchers have started to use sibling discovery sam-
ples to overcome this problem, and such studies have 
shown just how inflated population-based R2 estimates 
are. For example, in a recent study of 159,701 siblings 
using sibling GWAS data (Howe et al., 2021), researchers 
observed that the within-sibships SNP heritability esti-
mate for EA attenuated by 71% from the population 
estimate (population h2 = 0.14; within-sibships h2 = 
0.04), while the estimate for cognition attenuated by 
46% (population h2 = 0.24; within-sibships h2 = 0.13). 
Reported genetic correlations (for explanation, see Plei-
otropy section below) between EA and height (Valge 
et al., 2019) and EA and BMI (Zeng et al., 2019), when 
reestimated with sibship data, were close to 0. The 
authors of this study (Howe et  al., 2021) noted that 
“population estimates are likely to be driven by demog-
raphy [i.e., population stratification] and indirect genetic 
effects” (p. 7).

Are sibling and family studies completely immune 
from population stratification, as is commonly assumed? 
They are not. It is known, for example, that in so-called 
admixed populations, stratification can persist in sibship 
studies (Mersha et al., 2015; Thornton et al., 2012; Wang 
et al., 2016). An admixed population is one in which 
members have recent ancestry from two or more sepa-
rate sources. For example, as an “ancestral population,” 
African Americans arose within the past 400 years, and 
genome-wide ancestry estimates show averages of 73.2% 
African, 24.0% European, and 0.8% Native American 
ancestry (Bryc et al., 2015). Although persons of Euro-
pean ancestry are not an admixed population in this 
sense, the rise of multiracial and multiethnic children in 
the U.S. and Europe introduces admixture by degrees.

Genetic Correlations

Proxy phenotypes

What kind of phenotypes are “income” and “EA”? 
According to Hill, Davies, et al. (2019), there are no risk 
alleles for income per se. Instead, there are risk alleles 
for attributes that are correlated with, and have a causal 
effect on, income:

Genetic variants do not act directly on income; 
instead, genetic variants are associated with partly 
heritable traits (such as intelligence, conscien-
tiousness, health, etc.), which have their own 
complex gene-to-phenotype paths (including neu-
ral variables) and are ultimately associated with 
income. (p. 19)

Indeed, the idea of a phenotype “income,” apart from 
all behaviors and features of persons that might influ-
ence it, and apart from the particular social, political, 
and economic institutions in which income exists and 
its distribution occurs, is nonsensical. Furthermore, as 
Hill, Davies, et al. (2019) note, any correlation between 
a given attribute (e.g., intelligence or health) and 
income is socially and historically contingent: Income 
could just as well depend on service to the party, and 
continually shifting political policies can alter, if not 
eliminate, the degree of correlation between income 
and health. The same is true of EA. The grade one 
completes in a particular educational system (i.e., EA), 
in addition to being correlated with various socioeco-
nomic factors, is correlated with different behavioral 
and health-related attributes, some of which exert a 
causal influence on EA and may also be heritable. But 
“the grade one completes” is not itself a phenotype that 
influences the grade one completes in addition to these 
behavioral and physical attributes. It is for such reasons, 
presumably, that EA is treated as a proxy phenotype 
(Rietveld et al., 2014): “Educational attainment is a good 
proxy phenotype for cognitive performance, because 
cognitive performance is strongly genetically influenced 
and causally affects educational attainment” (p. 13791).

PRSs for proxy phenotypes such as income and EA 
can, presumably, predict heritable attributes with which 
income and EA are correlated and that exert a casual 
influence on them. However, income and EA are also 
commonly said to be “genetically correlated,” not only 
with each other and with intelligence but also with a 
host of other attributes. How is this possible? Inasmuch 
as there is now an explosion of studies exploring 
genetic correlations between phenotypes, this is a ques-
tion of some importance.



“Golden Age” of Behavior Genetics? 15

Pleiotropy

Genetic correlation, or “genetic overlap,” is a measure 
of the proportion of variance that two traits share as a 
result of shared risk alleles (Hackinger & Zeggini, 2017). 
It is taken as an indication of pleiotropy, the phenom-
enon in which the same allele serves as a risk factor 
for two different phenotypes. Researchers typically 
divide pleiotropy into horizontal pleiotropy and vertical 
(or mediated) pleiotropy.

Horizontal pleiotropy. Horizontal pleiotropy (Fig. 3a) 
occurs when two or more traits share a certain percent-
age of risk alleles. It can serve as an explanation for their 
phenotypic correlation or co-occurrence: They co-occur 
because their risk alleles are shared and hence inherited 
together. If genetic correlations are sufficiently high, a 
PRS for one trait can predict a certain percentage of the 
variance of the correlated trait. So called cross-trait PRSs 
have become a popular technique to measure the genetic 
similarity of polygenic traits (Leppert et al., 2020; Pouget 
et al., 2019). In the current context, claims of genetic cor-
relation do not concern the correlation of known risk 
alleles (which, it will be recalled, are not identified in 
GWASs). Rather, it is a correlation between marker alleles 
and a given trait. The marker SNPs the two traits have in 
common are assumed to be in LD with the same risk 
alleles (van Rheenen et al., 2019), but there is no way that 
researchers can know this to be the case.

Vertical pleiotropy and heritability. In contrast to 
horizontal pleiotropy, vertical pleiotropy (Fig. 3b) occurs 

when two phenotypes, A and B, are correlated not 
because they share risk alleles but rather because A has 
a causal effect on B. B may be heritable with causal-risk 
alleles of its own, or it may not be heritable. The latter is 
the type of relationship assumed, for example, by Hill, 
Davies, et al. (2019) between intelligence (and health) 
and income. Intelligence (A), which possesses (according 
to Hill and most others) genetic risk alleles, stands in a 
causal relation to income (B), which does not (Fig. 3c).5 
However, calling vertical pleiotropy a form of pleiotropy 
is an egregious misnomer. The correlation between intel-
ligence and income has nothing to do with shared alleles 
because “genetic variants do not act directly on income” 
(Hill, Davies, et al., 2019, p. 19). Any genetic correlation 
between intelligence—or anything else—and income, is 
spurious, and it is for this reason that, until recently, verti-
cal pleiotropy was referred to as spurious pleiotropy (van 
Rheenen et al., 2019; Wagner & Zhang, 2011).

Equally misleading are claims that income and EA are 
heritable. One might object that nothing in the concept 
of heritability requires that a trait deemed heritable be 
influenced by the transmission of parental risk alleles for 
that trait. It is sufficient that a heritable trait A stands in 
a causal relationship to another trait B. If we are going 
to accept this, then it is not clear on what grounds popu-
lation stratification can be considered confounding. Take 
the following example. The Mennonites represent a 
branch of the Anabaptist movement that began in north-
ern and central Europe in the 16th century and have a 
well-documented migration and genealogical history. 
They are an ancestral population with a history of endog-
amy, and contemporary Mennonites exhibit distinct 
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Fig. 3. Horizontal and vertical pleiotropy. In horizontal pleiotropy (a), two attributes, A and B, are correlated because they share a certain 
percentage of genetic risk alleles. In vertical pleiotropy (b), two attributes, A and B, are correlated not because they share genetic risk 
alleles, but because A has a causal influence on B. B could be heritable with its own risk alleles that are distinct from A’s, or it could be 
nonheritable and without any risk alleles, as in the case of income. In (c), the relationship between intelligence and income is depicted as 
an example of vertical pleiotropy. In (d), the relationship between being a member of a specific Central European subpopulation and hav-
ing a Mennonite religious affiliation is depicted as an instance of vertical pleiotropy.
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population genetic characteristics, including differences 
in allele frequencies (Melton, 2012). Consider a PRS that 
predicts (B) Mennonite religious affiliation, which, pre-
sumably, is nonheritable (Fig. 3d). It predicts this because 
it predicts (A) being a member of the Mennonite popula-
tion. Being a member of this population is heritable and 
has genetic risk factors. The relationship between A and 
B is causal. Why would we not say that being a member 
of the Mennonite ancestral population (A) exhibits “verti-
cal pleiotropy” with Mennonite religious affiliation (B) 
and that as a result, Mennonite religious affiliation is 
heritable? “Religious affiliation” is often referred to as an 
example of one of the few human “behaviors” that is not 
heritable (D’Onofrio et al., 1999). Given the claim that 
income and EA are heritable, it is not clear why religious 
affiliation is not heritable.

An abundance of correlations

With more genetic correlation studies have come ever 
more reports of genetic correlations (whether horizon-
tal or vertical). Intelligence, for example, has been 
reported to be significantly positively genetically cor-
related with, among other things, EA, income, autism, 
short-sightedness, cheese intake, eating Muesli cereal, 
grip strength in the right hand, age at first birth, longev-
ity, parental longevity, voting behavior, anorexia ner-
vosa, wearing glasses or contact lenses, subjective 
well-being, intracranial volume, height, drinking ground 
coffee, belonging to a religious group as a leisure activ-
ity, and iron and magnesium levels, and to be negatively 
correlated6 with type 2 diabetes, schizophrenia, hypero-
pia, bipolar disorder, Alzheimer’s disease, obesity/BMI, 
number of children, neuroticism, major depressive dis-
order, coronary artery disease, heart attack, ischemic 
and large vessel disease stroke, bipolar disorder, atten-
tion-deficit/hyperactivity disorder, osteoarthritis, hyper-
tension, levels of C-reactive protein (a protein made in 
response to inflammation), and lung cancer (Aaroe 
et  al., 2021; Abbott et  al., 2021; Davies et  al., 2018; 
Engen et al., 2020; Hagenaars et al., 2016; Hill, Davies, 
et al., 2019; Hill, Marioni, et al., 2019; Ligthart et al., 
2018; Savage et al., 2018; Valge et al., 2019; Y. Zhao, 
Ning, et al., 2019). Given the number of correlations, 
when researchers claim that a PRS predicts intelligence, 
how do they know they are predicting intelligence 
(however precisely this is measured) and not one or 
more of the above?

Many findings of genetic correlations are contradic-
tory and/or have not been consistently replicated. For 
example, Engen et al. (2020) report no negative genetic 
correlation between intelligence and schizophrenia; 
Hill, Davies, et al. (2019) report no genetic correlation 
between intelligence and subjective well-being; and 

Hill, Marioni, et al. (2019) report no negative genetic 
correlation between intelligence and bipolar disorder. 
In a study using sibship data, Howe et al. (2021), report 
no genetic correlation between intelligence and height, 
BMI, and levels of C-reactive protein. It is often assumed 
that high genetic correlations entail high phenotypic 
correlations (an assumption known as “Cheverud’s con-
jecture” [Cheverud, 1988]). But such need not be the 
case. For example, in a study of assorted psychiatric 
conditions, Roelfs et al. (2021) noted that a large por-
tion of significant genetic correlation occurred between 
attributes that were phenotypically uncorrelated. This 
might help explain seemingly contradictory findings. 
For example, researchers have reported a positive 
genetic correlation between autism and EA (Grove 
et al., 2019), although phenotypically, the correlation 
is negative (Toft et  al., 2021). Autism has also been 
genetically correlated, in different studies, with both 
higher intelligence (Bulik-Sullivan et al., 2015; Clarke 
et  al., 2016) and intellectual disability ( Jensen et  al., 
2020). A phenotype may show a positive genetic cor-
relation with one of two genetically correlated traits 
and a negative correlation with the other. For example, 
schizophrenia is frequently reported to be genetically 
correlated with lower general cognitive function and 
higher EA (Lam et al., 2019; Ohi et al., 2018; Savage 
et al., 2018), even though higher general cognitive func-
tion and higher EA are reported to be highly genetically 
and phenotypically correlated.

Conclusion

It has been argued that many of the same problematic 
research practices that undermined CGA studies persist 
in the era of GWASs. Some of them, such as data mining 
without statistical correction and unrestrained researcher 
degrees of freedom, are, for the most part, no longer 
seen as problematic. Replication studies have failed to 
consistently find the same results, a problem com-
pounded by a lack of clarity as to what counts as rep-
lication in the first place. Population stratification is 
often cited as one of the reasons for the failure of CGA 
studies (Cardon & Palmer, 2003), and there is over-
whelming evidence that bias due to population stratifi-
cation persists as well. It should not be surprising that 
techniques designed to deal with correlations involving 
a single allele are ineffective when dealing with tens of 
millions of alleles. The CGA study era was characterized 
by claims that transcended the available knowledge. 
Currently, however, researchers do not hesitate to pro-
pose genetic neuronal pathways underlying variation in 
complex behaviors without knowing what the genetic 
risk factors are; or they assume that two genetically 
correlated traits share not only the same marker SNPs 
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but also the same risk alleles in LD with them. As new 
sources of bias are uncovered and researchers attempt 
to deal with them, the fraction of heritability explained 
by SNPs goes down, not up. The “excessive pleiotropy” 
of the CGA study era concerned only a handful of poly-
morphisms. But the proliferating numbers of genetic 
correlations reported in the GWAS era do not seem any 
more biologically plausible, despite involving thousands 
to millions of alleles. It also raises the question of how 
researchers know that their PRSs are, in fact, predicting 
what they claim they are. Finally, it matters whether a 
social aspect of a person such as income or EA is heri-
table or is correlated with—because it is influenced 
by—a heritable characteristic (e.g., chronic illness). 
Heritability by association is no more a scientific prin-
ciple than guilt by association is a moral one.

Researchers employ the tools of modern genetic 
research in service of Fisher’s century-old model. This 
model, however, is not up to the task of serving as a 
guide for identifying (for the most part still hypotheti-
cal) risk alleles. Using this model is like trying to use 
Newtonian physics to study objects traveling at the 
speed of light. Current GWASs are focused almost 
exclusively on finding additive effects when recent 
molecular—as opposed to statistical—evidence indi-
cates that biological systems are anything but additive; 
that is, they are characterized by widespread epistasis 
or G × G interactions (Miton et al., 2021; Reddy & Desai, 
2021). Nothing points to the limitations of Fisher’s 
model more clearly than supposed “genetic correla-
tions.” To assume that X% of alleles shared between 
two phenotypes entails X% of shared risk reduces bio-
logical causation to a matter of counting. To take the 
presence of an allele as equal to its assumed fractional 
additive effect is to ignore the genetic, epigenetic, and 
environmental “background” and the interactive bio-
logical system within which allelic effects come to be 
in the first place. Most of the statistical algorithms 
employed in the GWAS era depend on the assumption 
that potentially highly disruptive phenomena such as 
LRLD, de novo CNVs, extrachromosomal circular DNA, 
polyploidy, somatic mosaicism, and cryptic population 
structure are absent, even though we know they are 
widespread. Of course, much more needs to be said 
about these matters than can be said here.

In describing what he calls the “gloomy prospect” 
for using GWAS to find alleles underlying heritability, 
Turkheimer commented (2016):

EA and divorce are not discernible entities at a 
genetic level of analysis. What we will see instead 
is a proliferation of small, diverse, contingent find-
ings that do not accumulate into coherent scien-
tific theories. These will not be robust findings 

with large effect sizes; they will be the signature 
of a complex problem being addressed at the 
wrong level of analysis. They will be the keyless 
sidewalk under the genomic streetlight. (p. 27)

Turkheimer was right. There is little evidence that 
current approaches have either advanced our knowl-
edge of how genes contribute to complex behaviors or 
given us new tools to predict them.
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Notes

1. The terms attributes, traits, and phenotypes will be used inter-
changeably. The use of the term phenotype is not intended, for 
the most part, to imply an assumption of the existence of a cor-
responding genotype.
2. For a list of some of the phenotypes reported to be associ-
ated with polymorphisms of MAOA, 5HTT, DRD2, and DRD4, 
see Charney (2012).
3. The rs number is an accession number used by researchers 
and databases to refer to specific SNPs. It stands for Reference 
SNP cluster ID.
4. See the “SNPs per Study” and “Table SNPs > 1 studies” tab 
in the Supplemental Material. The data for all these studies 
are available online at GWAS Catalog (https://www.ebi.ac.uk/
gwas/).
5. Researchers generally treat the causal relationship between 
intelligence and income/EA in the same manner: (Heritable) 
intelligence can be a cause of variation in EA, but varia-
tion in EA is not considered a possible cause of variation in 
intelligence, despite a good deal of evidence to the contrary 
(Hegelund et al., 2020; Kremen et al., 2019; Leist et al., 2021). 
If both intelligence and EA influenced each other, they would 
stand in a relationship of reciprocal or bidirectional causation.
6. A negative genetic correlation indicates that individuals with 
high genotypic values for trait A tend to have low genotypic 
values for trait B.
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