
IS THIS THE 
“GOLDEN AGE” 
OF BEHAVIORAL 
GENETICS?

EVAN CHARNEY 
THE SAMUEL DUBOIS COOK CENTER ON SOCIAL EQUITY 





TABLE OF  
CONTENTS

EXECUTIVE SUMMARY
PAGE 5

INTRODUCTION
PAGE 6

I. HERITABILITY 
PAGE 6

II. THE SEARCH FOR DIFFERENCES IN 
POLYMORPHISM FREQUENCIES I:  
CANDIDATE GENE ASSOCIATION STUDIES
PAGE 7

III. THE SEARCH FOR DIFFERENCES IN  
ALLELE FREQUENCIES II: GENOME WIDE 
ASSOCIATION STUDIES
PAGE 10

IV. POLYGENIC SCORES
PAGE 14

V. POPULATION STRATIFICATION
PAGE 18

VI. GENETIC ESTIMATE BREEDING VALUES
PAGE 20

VII. GENETIC HETEROGENEITY
PAGE 21

CONCLUSION
PAGE 23

GLOSSARY
PAGE 24

REFERENCES
PAGE 26



4



Executive Summary
Decades of twin studies have given rise to the conviction that all, or almost all, 
human behavior is heritable, no matter how embedded in culture, language, 
history, complex human interactions, and social institutions. With virtually all 
human behavior deemed heritable, the next step has been to identify the 
underlying genetic variants or genetic risk factors. The enduring hope has been 
to be able to determine on the basis of, for example, a newborn’s genotype her 
“genetic risk” for engaging in criminal behavior or for doing poorly in school. 
This search has preceded in two phases.

The first phase of this search, the heyday of which took place from approxi-
mately 1990-2010, involved candidate gene association (CGA) studies of a 
small number of polymorphisms of a handful of genes. Despite the hype and 
promise, they failed for a variety of reasons. From their inception, CGA studies 
were plagued by failures of replication. For example, for every study in which 
researchers reported that specific polymorphisms of the MAOA gene predicted 
“anti-social” behavior, there was a study displaying no association. In addition, 
CGA studies frequently exhibited data mining or multiple hypothesis testing 
through, for example, the inclusion of numerous interaction terms with no p-value 
adjustment.

It is now the consensus view in behavior genetics that all of these studies’ signif-
icant findings were “false positives.” In an article titled, “A Waste of 1000 Re-
search Papers,” psychiatric geneticist Matthew Keller, reflecting on CGA studies 
in general, asked, “How on Earth could we have spent 20 years and hundreds 
of millions of dollars studying pure noise?” This report asks if the lessons of the 
cautionary of  CGA studies have been learned.

The second phase of the search for genetic variants underlying heritability 
centers on genome wide association studies (GWASs), polygenic scores, and 
the resurrection of Fisher’s “infinite infinitesimal” allele model, first proposed 
100 years ago. According to this model, hundreds or thousands or millions of 
polymorphisms, each of miniscule effect, act as genetic risk factors for heritable 
behavior. Hence, massive sample sizes are required to find alleles that each 
exercise a tiny effect. 

GWASs involve the search for differences in the frequencies of a type of 
genetic variant known as a single nucleotide polymorphism (SNP) between 
cases and controls. A million or more of these polymorphisms are examined in 
the genomes of large numbers of persons, with sample sizes in the hundreds of 
thousands or even millions. A GWAS is an acknowledged form of data mining: 
For this reason, a Bonferroni correction is typically used to adjust for a million 
or more individual tests. Any SNP that is significant at the stringent p-value of 
≤5.0 × 10−8 is said to have genome wide significance and to be a “lead” SNP. 
As sample sizes have grown, the number of lead SNPs also have grown.

However, like the CGA era, these lead SNPs have not been consistently 
replicated across studies. Six large metanalyses of “intelligence”/“cognitive 
ability” of hundreds of thousands of individuals identified 1906 SNPs across 
the six studies at a stringent level of statistical significance; of these, no SNP 
was replicated in all of the studies, 11 percent were replicated in more than 
one study and among those 76 percent were replicated in only one additional 
study. Four metanalyses of educational attainment displayed a similarly poor 
record of replication.

Nevertheless, the results of these studies are now commonly used to 
construct polygenic scores. In theory, a polygenic score (PGS) provides a 
single numerical measure of genetic risk. It is constructed by adding up the 
estimated effect sizes of all of the SNPs that show an association with a 
particular phenotype (which can be well over a million SNPs). PGSs are 
often characterized as predictors of individual risk, or one’s likelihood to 
attain a certain outcome.

In fact, polygenic scores for educational attainment or intelligence or 
income have no individual predictive value whatsoever. It is an open 
question as to whether any individual polygenic scores for any phenotype 
have predictive value.  

The success of a PGS is measured by its R-squared: the higher the 
R-squared, the greater the amount of phenotypic variance predicted in 
a given population. Researchers have an enormous amount of freedom 
in constructing a PGS with the goal of achieving the highest R-squared 
possible. This includes the freedom to try different p-values for inclusion of 
the estimated effect sizes of individual SNPs in the score, including values 
up to p=1. 

To be clear, this approach abandons any statistical correction for data 
mining. Researchers claim that this is justified by an increase in predictive 
power (as measured by a higher R-squared). There are strong reasons to 
conclude that all of this freedom results in model overfitting—a prediction 
based on sample noise rather than a reflection of a real relationship—de-
spite the claims of researchers to have introduced safeguards against this.

All of the studies alluded to, as well as most of the major published studies 
involving GWASs and PGSs, are intentionally limited to “whites of Europe-
an ancestry” (WoEA). When non-WoEA are included in any part of the 
study, the R-squared of the polygenic score plummets. The standard reason 
given for this concerns population differences in allele frequencies due to 
different migratory histories, known as population “structure.” 

The notion that researchers can effectively account for population “structure” 
within WoEA—but not between WoEA and other ancestral groups—re-
inforces the idea of intra-group (relative) genetic homogeneity, inter-group 
genetic heterogeneity, and the significance of the system of classification 
based upon these presumed genetic differences. Certainly, this is a danger-
ous belief. Moreover, there is increasing evidence that the usual techniques 
for dealing with population structure among WoEA (principal components 
analysis and linear mixed models) are inadequate and have led to biased 
findings.

In sum, the lessons of the candidate gene association study era have not 
been learned in the subsequent era of genome wide association studies 
and polygenic scores. While the methodologies are different, they exhibit 
many of the same infirmities that doomed CGA studies, and have intro-
duced a host of new ones. The search for genetic foundations of complex 
human behaviors has been a diversion. The costs of this research have 
been immense in terms of time, energy, and financial resources, and the 
research itself has distracted scholars from more promising routes toward un-
derstanding such things as differences in academic performance or income.
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Introduction
Decades of twin studies have given rise to the conviction that all, or almost 
all human behavior, no matter how entwined with culture, language, history, 
complex human interactions, and social institutions, is heritable. With so 
much deemed heritable, the next step has been to identify the underlying 
genetic variants. This process has unfolded in two phases. The first phase, 
which extended from the early 1990s to approximately 2012, was charac-
terized by the use of candidate gene association (CGA) studies. 

During this time, researchers reported, literally, in thousands of publications 
that specific polymorphisms of specific genes could predict everything from 
income to educational attainment to attitudes toward nuclear power. CGA 
studies have fallen largely out of favor, so much so that psychiatric geneticist 
Matthew Keller, reflecting on CGA studies in general, recently asked, “How 
on Earth could we have spent 20 years and hundreds of millions of dollars 
studying pure noise?” (quoted in Yong 2019). 

This brings us to the second phase, which has recently been referred to as a 
“golden age” of genomics:  “Genomic technology has ushered in a golden 
age of new tools to address enduring questions about how genes and 
environments combine to create unique human lives” (Harden 2020). These 
“new tools” include genome wide association studies (GWAS), single nucle-
otide polymorphism heritability estimates, and polygenic scores. The claims 
are the same as in the era of CGA studies: that complex social behaviors, 
including income and educational attainment, can be predicted on the basis 
of an individual’s genotype.

The rise of the new golden age from the ashes of CGA studies has occurred 
at a precipitous rate. The failure of CGA studies has been called a caution-
ary tale (Keller, quoted in Yong 2019). Reflecting back, researchers warned 
(Chabris et al. 2012, 8) that associations of genes, “with psychological 
and other social science traits should be viewed as tentative until they have 
been replicated in multiple large samples,” because “[d]oing otherwise may 
hamper scientific progress by proliferating potentially false positive results.” 
Have the lessons of the cautionary tale of CGA studies been learned in 
the age of GWAS and polygenic scores? And has the “true” golden age 
of behavior genetics arrived at last? As argued here, the answer to both of 
these questions is “no.” The current iteration of the search for genetic variants 
underlying heritability is subject to many of the same infirmities that doomed 
its predecessor.

I. Heritability 
A heritability estimate for a specific trait or attribute1 is a measure of 
the amount of variation in that attribute among the members of a given 
population, at a given time, that can be correlated with members’ genetic 
variation. The easiest way to conceptualize a heritability estimate and what 
it represents is to think of heritability in relation to the population of parents 
and children. A heritability estimate is intended to provide an answer to the 
following question: How much of the variation (0 [0%] to 1 [100%]) in a 
given trait of a child is correlated with, and presumably caused by, the DNA 

sequences she inherits from her parents, and how much is due to her “envi-
ronment” (generally construed as everything other than DNA sequences)? 

However, this definition needs to be amended as follows. For the most part, 
heritability is not taken to refer the percentage of variation in an attribute (in 
a given population at a given time) that is correlated with variation in the 
inherited DNA (of the members of that population), but rather to the amount 
of variation in the risk of an attribute that is correlated with genetic variation. 
This is because for most complex traits (traits that are not caused by single 
gene mutations and inherited in a straightforward Mendelian manner), 
inherited DNA sequences are not, by themselves, deemed sufficient to be 
causal. Rather, they contribute a certain amount of risk and the environment 
contributes a certain amount of risk. In this context, “risk” has no connotation of 
adverse consequences. Rather, it refers simply to the increased probability of 
an occurrence of something, be it good, bad, or indifferent. 

Individuals typically inherit 22 pairs of numbered (homologous) chromosomes, 
one from each parent, called autosomes. In addition, females inherit a pair 
of homologous X sex-chromosomes, and males inherit a single Y sex-chromo-
some. Each of these chromosomes contains a long DNA molecule. Segments 
of the corresponding nucleotide sequences on each pair of chromosomes are 
typically the same but can also differ. 

For example, at a specific location on chromosome 13, one might inherit an 
A nucleotide from her father and a G nucleotide from her mother (or she might 
inherit two A’s, or two G’s). Or, at a particular position on chromosome 4 
she might inherit three copies of the repeating DNA sequence “ACCA” from 
her mother, and four copies from her father. Each of these copies of DNA 
sequences at a given position on a chromosome is called an allele.

Twin Studies
Twin studies are based upon a comparison of pairs of monozygotic (MZ) 
twins, derived from a single egg and sperm and dizygotic (DZ) twins, 
derived from two separate egg and sperm. Because MZ twin are derived 
from a single egg and sperm, they are presumed to share 100% of their 
inherited DNA sequences. DZ twins, derived from two separate egg and 
sperm, differ from each other in approximately 50% of their inherited DNA 
sequences. 
 
In a twin study, researchers measure the concordance rate—the probability 
that a pair of individuals will both have a certain trait—for pairs of MZ and 
DZ twins for a trait of interest. If MZ twin pairs have a greater concordance 
rate for that trait than DZ twin pairs, this greater concordance is ascribed 
to MZ twins’ greater genetic concordance (1 for MZ twins and .5 for DZ 
twins) and is used to derive a heritability estimate. According to the standard 
behavior genetics model (Posthuma et al. 2003), which measures so-called 
“narrow sense” heritability (h2), the genetic heritability of an attribute is twice 
the difference of the correlations between MZ and DZ twins: h2 = 2(R(MZ) 
-R(DZ)). 
One important assumption of this model is additivity: If, for example, one 

 1 “ Attribute” is my preferred expression for any observable characteristic. For the most part, I use it instead of “trait,” which has connotations that are inappropriate in a number of contexts. I also employ the term “phenotype”—which implies genotype—
in certain contexts without necessarily endorsing the assumption of a corollary genotype..
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variant form of a gene (an allele) increases the risk of being 1 cm taller, then 
have having two copies of that allele (i.e., being homozygous) increases the 
risk of being 2 cm taller. This model assumes no dominant or recessive effects, 
no gene x gene (G x G) interactions, and no gene x environment (G x E) 
interactions. It is also the model that is assumed in all of the studies that will be 
considered throughout this paper. 

Over the years, twin studies appear to have shown the heritability of any and 
every human “behavior,” from attitudes toward nuclear power (Alford et al. 
2005) to religious affiliation (i.e., whether one is an Episcopalian, a Hassidic 
Jew, a Sunni Muslim, or Zoroastrian), despite the apparent absurdity of such 
findings. 

Such findings, and countless others, were the impetus for the so-called “first 
law” of behavior genetics (Turkheimer 2000): “All human behavior is herita-
ble,” which was, apparently, not intended as a “universal, mechanistic truth,” 
but as “a robust empirical reality” (Chabris et al. 2015). 

It is not my intent here to undertake a general critique of the twin study 
methodology, which has been vigorously challenged elsewhere (Joseph 
2014; Richardson and Norgate 2005; Kamin and Goldberger 2002; Wood 
2020; Pam et al. 1996; Charney 2012). I will, however, have something to 
say later concerning the additive model that has been used to derive the vast 
majority of twin study heritability estimates.

II. The Search for Differences in Polymorphism  
Frequencies I: Candidate Gene Association Studies
Heritability concerns inter-individual differences. Attributes that all persons 
share with the rarest of exceptions, like a brain, are not heritable (although 
differences in brain size, for example, are said to be heritable). Individual 
human genomes contain approximately 3 billion nucleotide base pairs. The 
sequence of these bases is roughly 99.9 percent alike in all humans. The 
search for the genetic basis of heritability, or genetic risk factors, is a search 
across the 0.1% of the human genome in which humans differ in their DNA 
sequences. 

When genetic variants are “common” in a given population, which is 
defined as occurring in more than 1% of the population, they are referred to 
as polymorphisms. The search for genetic variants’ underlying heritability, or 
for genetic “risk factors,” is a search for differences in allele frequencies, i.e.
differences in frequencies between cases and controls in dichotomous traits, 

or between those with different trait values in a quantitative trait . For ease of 
exposition, generally, I refer to attributes/traits as if they were dichotomous. 
In short,the search for genetic variants is an attempt to ascertain whether 
those with a given attribute have a higher frequency of certain alleles in their 
genomes compared against those who do not have the attribute.

i. CGA Studies
The first phase of the search for genetic risk factors in behavior genetics 
began in the 1990s. Prior to the sequencing of the human genome and 
dramatic advances in technology and reductions in cost that now enable 
the sequencing of millions of base pairs of the genomes of millions of 
individuals, the hunt for genetic variants focused on a small number of poly-
morphisms of a small number of genes (roughly 5 to 10). 

In particular frequencies of polymorphisms of the genes MAOA, 5HTT, 
DRD2, and DRD4, which are involved in the synthesis of proteins that play 
a role in regulating various neurotransmitters, were examined for correla-
tions with a wide array of behaviors. A relationship between these genes 
and human behavior was first made in the context of pharmacology. For 
example, the enzyme monoamine oxidase, synthesized from the MAOA 
gene is involved, among other things, in the breakdown of monoamines (the 
neurotransmitters dopamine, noradrenaline and serotonin); in the 1950s, 
monoamine oxidase inhibitors (MAOIs) were introduced for the treatment 
of depression and later a host of other conditions including panic disorder, 
social phobia, ADHD, migraines, and Parkinson’s disease. 

Polymorphisms of these genes were typically classified as being associ-
ated with differences in “transcriptional efficiency,” the amount of protein 
synthesized from a gene in a given period of time, or “protein efficiency,” 
the speed with which a protein acts or its endurance. For example, a 
polymorphism in the promoter region of the MAOA gene is characterized 
by a repeating sequence 30 bp long that can occur with different numbers 
of repeats (2, 3, 3.5, 4, or 5). 

On the basis of in vitro analysis, the 3.5 and 4 repeat variants were classi-
fied as “high” (H-MAOA), for “high transcriptional efficiency,” and the 3 and 
5 repeat variants as “low” (L-MAOA), for “low” “transcriptional efficiency” 
(Sabol et al. 1998). Similar classifications were made for polymorphisms 
of the other genes typically studied at this time (e.g., repeat polymorphisms 
of the serotonin transporter gene [5HTT] were classified as “long” [l] or 
“short” [s] on the basis of presumed differences in transcriptional efficiency). 

2MZ twins and DZ twins have all inherited 100% of their DNA sequences from their parents. When DZ twins are said to differ in about 50% of their inherited DNA sequences, the difference consists in which alleles each DZ twin has inherited from the mother 
and which from the father. 3“Religious affiliation” is frequently cited by researchers as an example of a non-heritable “behavior” (Olson et al. 2001; Eaves et al. 1990; D'Onofrio et al. 1999). This is taken as a confirmation of the legitimacy of the twin 
study methodology, namely, that it does not lead to results that “defy common sense” (Flint et al. 2020, p. 15). What is heritable is “religious attitudes—not specific religious affiliations but general views about the value of religion” (Olson et al. 2001). 
The supposed distinction between “religious attitudes” and “religious affiliation” is unsustainable, inasmuch as religious “attitudes” (which are, presumably, equivalent to religious beliefs) are set forth by the religion to which one belongs. That said, and 
disavowals notwithstanding, “religious affiliation” has been shown to be heritable, although researchers have bent over backwards to deny, minimize, or obfuscate such findings. Loehlin and Nichols (1976), who conducted a study of 850 twin pairs and 
published all of their raw data in a subsequent book. Among the questions twins were asked was, “What is your present religious preference?” and respondents were asked to circle one of the following: “Protestant; Roman Catholic; Jewish; other; None.” 
While Loehlin and Nichols never indicated whether they found “religious preference” to be heritable, Schönemann (1997) calculated that on the basis of the published intraclass correlations, religious affiliation was 85% heritable for males and 21% for 
females. D’Onofrio et al. (1999), commenting on an earlier study of 3810 pairs of twins (Eaves et al. 1990), indicate that (1999, p. 967): “There is a slight (and statistically significant) reduction in the DZ resemblance [for religious affiliation] in women 
[emphasis added].” Despite the correlation being statistically significant, they do not calculate a heritability estimate, but do provide the twin correlations, which indicate a heritability of 24% for women. This figure (24%) is higher than the heritability of 
other attributes that they highlight, including “institutional conservatism” (12%) and “religious occupational interests” (19%). Bradshaw and Ellison (2008) report a “high” heritability (65%) for responding “yes” to the following question: “Have you been 
‘born-again,’ that is, had a turning point in your life when you committed yourself to Jesus Christ?,” which indicates whether one is a Baptist. In a recent book on behavior genetics, the authors refer to the heritability of religious affiliation with revealing 
wording (Flint et al. 2020, p. 15): “Twins strongly resemble one other in their religion, but the degree of resemblance is virtually the same for MZ and DZ twins [emphasis added].” This is clearly not the case. One senses an effort to minimize uncomfortable 
findings (when has one ever encountered researchers playing down the significance of something that they acknowledge to be “statistically significant”?). That the twin study methodology leads to what, according to those who employ the methodology, 
are absurd results is just one of its many problems.  
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Polymorphisms of these genes were associated with behaviors via candidate 
gene association (CGA) studies. 

A standard CGA study is hypothesis-driven: a researcher proposes, on 
the basis of the presumed biological effect of, for example H-MAOA v. 
L-MAOA, that those with L-MAOA are more likely to engage in a certain 
type of behavior. This hypothesis is then tested in a data set. 

The years 1990 to 2010 were what might be called the “golden age” of 
CGA studies. Aided by the proliferation of large data sets that included an 
array of behavioral data (usually in the form of self-reporting), and genotypic 
data, often limited to the same polymorphisms of the same handful of genes, 
researchers published thousands of studies reporting statistically significant 
correlations between polymorphisms of the same handful of genes and 
every conceivable behavior.4 For example, using data from The National 
Longitudinal Study of Adolescent Health (Add Health)5,researchers hypoth-
esized that inasmuch as L-MAOA had been associated with anti-social 
behavior (Caspi et al. 2002), H-MAOA was likely to be associated with 
“pro-social” behavior, and since voting is a form of “pro-social” behavior, 
H-MAOA might be associated with “voting behavior” (Fowler and Dawes 
2008). Based on responses in the Add Health data set to the question, “Did 
you vote in the last Presidential election?”, they reported that H-MAOA was 
significantly associated with increased voter turnout (p = 0.03), and that the 
odds of those with the H-MAOA genotype voting were 1.26 times greater 
than those with the L-MAOA genotype. 

On an almost weekly basis, media reports heralded the findings of the latest 
CGA study with sensationalist headlines (e.g., “Procrastination is in your 
genes” [CNN, April 8, 2014]; “The urge to infidelity ... it’s in her genes” [The 
Guardian, Nov. 21, 2004]); Researchers suggested that the results of CGA 
studies might contribute to “individualized preventive psychiatry” (Muller-
Spahn 2008) and that early intervention services for the families of L-MAOA 
children might be a means to reduce violent crime (Brooks-Crozier 2011). 
Legal scholars debated whether L-MAOA could count as a defense in a 
criminal trial (McSwiggan et al. 2017); and medical ethicists suggested that 
we might have a moral obligation to avoid having children with the L-MAOA 
genotype (Savulescu 2014). 

ii. Replication I
What was missing in all of the hullabaloo surrounding CGA studies was 
that, from their inception, they were plagued by failures of replication. Con-
sistent replication of findings across studies remains one of the most important 
tools for verification in the empirical sciences. For every study, or multiple 
studies, reporting an association between, for example, L-MAOA and “an-
ti-social” behavior (Caspi et al. 2002; Kim-Cohen et al. 2006; Widom and 
Brzustowicz 2006), a study (or studies) reported no association (Prichard et 
al. 2008; Haberstick et al. 2005; Huizinga et al. 2006). The situation was 
precisely the same for all of the other notable associations between polymor-
phisms of MAOA, 5HTT, DRD2, DRD4, and well as several other genes. 

In 2012, the editor of Behavior Genetics, the premier behavioral genetics 
publication noted, in setting forth strict criteria for publication of CGA studies 
(Hewitt 2012, 1):

The literature on candidate gene associations is full of reports that have not stood up 
to rigorous replication. This is the case both for straightforward main effects and for 
candidate gene-by-environment interactions. As a result, the psychiatric and behavior 
genetics literature has become confusing and it now seems likely that many of the 
published findings of the last decade are wrong or misleading and have not contributed 
to real advances in knowledge [citations omitted]. 

In adopting a similar editorial policy for the publication of CGA studies, the 
editor of the Journal of Abnormal Psychology noted, regarding publication 
bias (Johnston et al. 2013, 512):

The tendency for novel findings to subsequently fail replication may be particularly great 
in new and “hot” areas of research, such as candidate gene associations and gene-envi-
ronment interactions. The existence of a strong publication bias towards positive findings 
is partly due to incentives both for authors and editors to publish positive reports. Other 
things being equal, reviewers and editors may be more likely to agree that exciting and 
novel findings should be published than research on more established topics.

In an article titled, “Most Reported Genetics Associations with General Intel-
ligence are Likely False Positives” (Chabris et al. 2012), researchers reported 
the failure to replicate, using large (for the time) sample sizes (5571, 1759, 
and 2441), any of the previously reported candidate gene associations 
between “g” (a measure of intelligence) and polymorphisms of 12 different 
genes. In their conclusion, they cautioned (Chabris et al. 2012, 8):

Associations of candidate genes with psychological and other social science traits should 
be viewed as tentative until they have been replicated in multiple large samples. Doing 
otherwise may hamper scientific progress by proliferating potentially false positive 
results, which may then influence the research agendas of other scientists who do not 
appreciate that the associations they take as a starting point for their efforts may not 
be real. And the dissemination of false results to the public risks creating an incorrect 
perception about the state of knowledge in the field, especially the existence of genes 
described as being “for” traits on the basis of unintentionally inflated estimates of effect 
size and statistical significance. 

Similar large disconfirming studies were also published regarding schizophre-
nia (Farrell et al. 2015) and depression (Border et al. 2019). In an article 
titled, “It is Time to Abandon the Candidate-Gene Approach to Depres-
sion” (Border et al. 2019), researchers reported that candidate genes for 
depression were no more correlated with depression than any gene chosen 
at random. As noted in the introduction, Keller, reflecting on CGA studies in 
general, recently said of the heyday of CGA studies (quoted in Yong 2019):

This should be a real cautionary tale. How on Earth could we have spent 20 years and 
hundreds of millions of dollars studying pure noise? 

4For a list of some of the phenotypes reported to be associated with polymorphisms of MAOA, 5HTT, DRD2, and DRD4, see “Four Genes Predict Everything”: https://sites.duke.edu/evancharney/files/2014/12/4-GENE-PREDICT-EVERYTHING-12-1.pdf 
5https://addhealth.cpc.unc.edu/  
6See “Four Genes Predict Everything”: https://sites.duke.edu/evancharney/files/2014/12/4-GENE-PREDICT-EVERYTHING-12-1.pdf
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Of CGA studies, Flint et al. comment (2020, p. 60): “There are literally thou-
sands of papers reporting the reults of [CGA studies], but it’s not too harsh to 
say simply that these studies have taught us nothing useful about the genetic 
basis of psychiatric disease.”

The fact that 20 years and hundreds of millions of dollars were spent study-
ing “pure noise” is now the consensus view in behavior genetics (Border 
and Keller 2017; Duncan et al. 2019), although it is by no means universally 
accepted inasmuch as studies involving polymorphisms of the same handful 
of genes continue to be published to this day. The question posed by Keller  
never has been addressed in any serious and sustained manner by the 
behavior genetics community. 

Keep in mind that all of this “noise” was generated by thousands of studies 
published in prestigious science and social science journals with the appear-
ance of being based on rigorous statistical analyses. These studies were 
conducted by faculty at high cachet research universities and funded by 
millions of research dollars from organizations like the National Institutes of 
Health. An extensive analysis as to how such a thing could have happened 
will not be presented here (although we are certainly in need of one). Rath-
er, discussion is limited to two central themes in what follows immediately.

iii. Data Mining and Multiple Hypothesis Testing
Null hypothesis significance testing is the most widely used data analysis 
method in most scientific disciplines. According to the null hypothesis, there 
is no relationship between the two variables being studied and results show-
ing a relationship are due to chance alone. The alternative hypothesis is the 
one you would believe if the null hypothesis isdetermined to be untrue. 

The p-value represents the probability of finding a relationship between the 
two variables when the null hypothesis is true. This is typically expressed as 
a level of statistical significance between 0 and 1. The smaller the p-value, 
the stronger the evidence that you should reject the null hypothesis. For test-
ing a hypothesis, the commonly employed p-value is ≤ 0.05. A type 1 error, 
or a false positive, occurs when a true null hypothesis is incorrectly rejected, 
and a type II error, or false negative, occurs when a false null hypothesis is 
not rejected. 

A p-value ≤ 0.05 is a statistical threshold for testing a single hypothesis. 
When more than one test is run without any kind of correction in the form 
of a more stringent (that is, lower) p-value threshold, the overall type I error 
rate is much greater than 5%. For example, suppose one is using a behavior 
data set that has genotypic information for participants MAOA genotype (L 
or H) and subject responses to 1000 behavioral questions. A comparison 
of the frequencies of L v. H-MAOA for each of these “traits” (or responses) 
constitutes a hypothesis. Each association test is essentially a X2 test, if the 
trait is categorical, or a linear regression test if the trait is continuous (and 
follows a normal distribution). 

Thus, the testing of 1000 different traits amounts to a 1000 X2 tests (or 
linear regressions), each with its own null hypothesis. If the null hypothesis 
was true, an a level of 0.05 could theoretically produce 50 “significant” 
correlations by change alone. The most straightforward way to deal with 
multiple hypothesis testing is the Bonferroni correction, in which the a level is 

divided by the number of tests performed (i.e., the more tests performed, the 
more stringent the level of statistical significance). Dividing .05 by 1000, for 
example, yields a p-value of .00005. 

In tCGA studies, there are numerous examples of multiple hypothesis testing 
in the absences of any p-value adjustment. At one extreme, we have what 
might be termed a “statistical felony,” which does not actually concern 
any kind of hypothesis testing (as the term “hypothesis” is traditionally 
understood), multiple or otherwise. Rather, it involves “data mining,” that is, 
searching for correlations between a given gene and any and all of the 
(hundreds or thousands) of behavioral variables in a behavioral dataset 
with no statistical correction for running hundreds or thousands of tests (i.e., 
employing the standard p-value for testing a single hypothesis of p ≤ 0.05).  
Then, when a correlation is found, to construct a post hoc “hypothesis” to 
explain the finding (constructing a “hypothesis after the results are known,” or 
what is commonly referred to as HARKing [Kerr 1998]). 

Researchers also can engage in, if not pure data mining, a more limited 
form of multiple hypothesis testing (although there is no way to tell which is 
occurring in a given instance). For example, researchers might test multiple 
different polymorphisms or combinations of polymorphisms of the same 
gene and choose those that show a statistically significant correlation with a 
given behavior. For example, they can select those who have at least one 
copy of the number 3 (out of 9) repeat (R) allele of a polymorphism of the 
DRD4 gene have been reported to be more likely to have sexual intercourse 
at a younger age (Guo and Tong 2006). 

Or, associations may be reported between any combination of alleles and 
a given phenotype; for example, those with the genotype DRD4 2R/2R are 
more likely to exhibit depression (Guo and Tillman 2009b). Or associations 
may be reported between any combination of alleles of a given gene 
and the alleles of another gene (a G × G interaction); for example, those 
with DRD2 polymorphisms A1/A2 or A1/A1 and at least one 7R copy of 
the DRD4 gene are more likely to exhibit conduct disorders (Beaver et al. 
2007a). 

Furthermore, associations may be reported between any of these alleles 
and specific age groups, or genders, or ethnicities, or specific ethnicities 
and genders, and these associations may involve any conceivable gene x 
environment (G × E) interaction. An example is Vaske et al.’s (2009b) finding 
that African American females who use marijuana and have the short/short 
5-HTTLPR genotype are more likely to engage in “property offending” (Vaske 
et al. 2009b). CGA studies are supposed to be a form of hypothesis testing 
in which the hypothesis is formed prior to undertaking the statistical analysis, 
not afterwards. On what basis would one propose, a priori, that, for exam-
ple, African American females who use marijuana and have a short/short 
5-HTT genotype are more likely to engage in “property offending”? 

The manipulation of data in order to produce a desired p-value is sometimes 
referred to as “p-hacking.” P-hacking is typically accomplished through 
manipulation of “researcher degrees of freedom,” or the decisions made by 
the investigator. These include when to stop collecting data, whether or not 
the data will be transformed, which statistical tests (and parameters) will be 
used, how many and which variables and interaction terms will be used, 
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and so on. It has been estimated that by simply manipulating a researcher’s 
degrees of freedom, even absolutely negative data—data that shows no 
statistical correlation—can produce a p-value under 0.05 61% of the time 
(Simmons et al. 2011). Excessive degrees of freedom can lead to model 
overfitting, which will be explained in greater detail below. 
 
Antother type of  multiple hypothesis testing involves the widespread use of 
the same data sets by researchers engaged in a global hunt for correla-
tions between the same handful of polymorphisms and every conceivable 
human behavior. For example, the DRD2 Taq1A polymorphisms have been 
associated, by researchers using the same data set (The National Longitu-
dinal Study of Adolescent Health) with at least 19 different behaviors in 19 
different studies. Each of these studies constitutes (ideally) the testing of a 
single hypothesis, and collectively the testing of 19. 

Population stratification is often cited as a reason for the failure of CGA stud-
ies (Thomas and Witte 2002; Cardon and Palmer 2003). This phenome-
non will be considered in the discussion of genome wide association studies 
and polygenic scores below.

III. The Search for Differences in Allele Frequencies II:  
Genome Wide Association Studies
The main methodology used in the search for polymorphisms underlying the 
presumed heritability of complex behaviors gradually shifted from CGA stud-
ies to genome wide associations studies (GWAS), a shift that was enabled 
by advances in DNA sequencing technology and dramatic reductions in 
cost. GWAS now constitute the new workhorse of behavior genetics. 

While GWAS can be used to examine a variety of different kinds of genetic 
variants, the focus of most current GWAS is a particular type of polymor-
phism known as a single nucleotide polymorphism (SNP). A SNP is charac-
terized by the substitution of a particular nucleotide at a given position or 
locus on a DNA molecule. SNPs are largely, but by no means exclusively, 
diallelic, meaning they come in two possible forms (e.g., A or G). 
 SNPs can occur anywhere in human genomes—within genes or in intergen-
ic regions. They are the most common form of genetic variation in human 
populations (numerically, although not in terms of the total size of the region 
of the genome implicated). 

It is estimated that the genome of any individual contains approximately 
8-11 million SNPs. The less frequently occurring SNP in a given population 
is called the minor allele; the more frequently occurring is the major allele. 
As with other forms of genetic variation, a SNP is considered “common” if 

it occurs in more than 1% of a population. The search for SNPs associated 
with behavioral traits typically focuses on common SNPs, the assumption 
being that “common” traits, or relatively common traits, will be associated 
with common alleles.

Like a CGA study, a GWAS can be used to test the frequency differences 
of alleles known in advance in cases versus controls. However, the most 
common type of GWAS is somewhat confusingly referred to as “hypothe-
sis free.” It does not involve a specific polymorphism or polymorphisms that 
researchers hypothesize to be associated with a trait on the basis of its 
presumed physiological effect. Rather, large numbers of SNPs (a million or 
more in some studies) in a large number of cases and controls (a million or 
more in some studies) are compared to ascertain whether there is any dif-
ference in the frequency of SNP-alleles between cases and controls. There 
are no a priori assumptions as to what these genetic variants might be. 

It is, in effect, a “blind search” for correlations deemed statistically signifi-
cant between an attribute of interest and SNPs. However, while GWASs 
do not test pre-existing hypotheses of the sort, “we hypothesize that 
polymorphism x will predict behavior y,” they are by no means “hypoth-
esis free.” A comparison of the frequencies of each of the million SNPs is 
essentially a X2 test, if the trait is categorical, or a linear regression test if 
the trait is continuous (and follows a normal distribution). Thus, the testing 
of a million SNPs amounts to a million X2 tests (or linear regressions), each 
with its own null hypothesis. 

If the null hypothesis was true, an a level of 0.05, theoretically, could 
produce 50,000 “significant” SNPs. If we employ a Bonferroni correction 
and divide .05 by 1 million (the number of tests performed), the resulting 
p-value is 5.0 × 10−8. This is the threshold of statistical significance that is 
most commonly employed in GWASs. A SNP that achieves this signifi-
cance level is said to have genome wide significance. 

i. Linkage Disequilibrium
The search for differences in allele frequencies among cases versus con-
trols is not a search for alleles that have not been previously identified. The 
alleles are that investigated have already been catalogued and mapped 
across the genome, and they are the SNPs that are investigated on a 
DNA microarray (or DNA chip). These SNPs are referred to as “tag” or 
“marker” SNPs. Hence the search for SNPs in a GWAS is not actually a 
search for just any SNPs, but rather, in the first instance, a search for previ-
ously identified marker-SNPs. To understand how this works, it is necessary 
to say something about the phenomenon of linkage disequilibrium. 

7Associations claimed between the DRD2 Taq1A polymorphism and behaviors using the National Longitudinal Study of Adolescent Health data set include: Violent delinquency among males (Guo et al. 2007a); “homophily,” a desire for friends who also have 
the DRD2 Taq1A polymorphism (Fowler et al. 2011); the number of vaginal sexual partners in the previous year among males (Halpern et al. 2007); whether or not an offender has been violently victimized (Vaske et al. 2009); depression (Guo and Tillman 
2009a); victimization among white males who have delinquent peers (Beaver et al. 2007b); partisanship (Dawes and Fowler 2009); contraceptive use (Daw and Guo 2011); the intergenerational transmission of parenting (Beaver and Belsky 2012); 
resiliency to victimization (Beaver et al. 2010c); polydrug use among males who exhibit maternal withdrawal (Vaughn et al. 2009); continuation of education beyond secondary school among males who have mentors who are teachers (Shanahan et al. 
2007); frequency of alcohol consumption among young adults excluding adolescents (Guo et al. 2007b); five antisocial phenotypes among African American females who have a criminal father (DeLisi et al. 2009); academic achievement during middle and 
high school (Beaver et al. 2010b); smoking among young adults who report at least six inattentive symptoms (McClernon et al. 2008); verbal skills among whites (Beaver et al. 2010a); continuation of education beyond secondary school among males 
who have high parental socioeconomic status, high parental involvement in school, or attend high-quality schools (Shanahan et al. 2008); conduct disorder among males who also possess the DRD4 Exon 3 VNTR polymorphism (Beaver et al. 2007c); and 
the depressive effects of violent victimization on African American females (Vaske et al. 2009). Each one of these studies is the testing of a hypothesis..  
8A recent analysis of data from the 1000 Genomes Project has identified 271,934 tri-allelic SNPs, or approximately 0.32 % of all listed SNPs. The researchers note that multiple allele SNPs, including tetrallelic and triallelic, now make up a significant 
proportion of total SNP variation (Phillips et al. 2020). For tetrallelic SNPs, see (Phillips et al. 2015).
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According to Mendel’s law of independent assortment, any given allele 
will be inherited independently of any other allele. If someone inherits the 
SNP-allele A at a specific position on a specific chromosome, this tells us 
nothing about the allele that she will inherit on the same chromosome a 
hundred base pairs away. 

In reality, SNPs that occur “close” to each other tend to be inherited together 
because the entire segment of DNA on which they are located is inherited 
as a single piece. This segment of DNA is referred to as a haplotype bloc 
or simply a haplotype. The genotypes of different SNPs within a haplo-
type tend to be inherited together. Suppose that two SNPs are located at 
different loci in a haplotype. In SNP-1, the nucleotides G or T occur, and in 
SNP-2, the nucleotides C or G occur. Suppose we know that the genotype 
of SNP-1 is T; on this basis we can infer that the genotype of SNP-2 is G 
(with varying degrees of probability). 

This non-random association of alleles at two different loci in a haplotype is 
known as linkage disequilibrium (LD). Linkage disequilibrium plays a critical 
role in GWAS. Haplotypes have been mapped out across large segments 
of the genome. A current genome assay typically checks a person’s DNA 
sequences for a million marker-SNPs. However, researchers can infer, on 
the basis of the genotype of the marker-SNP, the genotype of many more 
SNPs known (or presumed) to be in linkage disequilibrium with it. This allows 
researchers to examine large segments of the genome without having to 
genotype each of the three billion pairs of DNA nucleotides. 

If researchers find a “hit” or correlation for a marker-SNP, the assumption, 
generally,is made  that the marker-SNP itself is not “causal.” Rather, the 
causal SNP is assumed to be an unknown SNP in LD with the marker-SNP. 
In other words, the marker-SNP serves as a proxy for the presumed, or hy-
pothesized, causal SNP. The importance of this fact cannot be understated.

One complication regarding LD is that multiple marker-SNPs that achieve 
genome wide significance could be in LD with each other. None of these 
marker-SNPs are considered to be causal. Rather, they are all assumed, 
in addition to being in LD with each other, to be in LD with, and to serve 
as proxies for, the same unknown causal SNP. Hence, if all of the SNPs 
in LD with each other were counted as having genome wide significance, 
this would be a form of “overcounting.” The simplest way to deal with this 
is referred to as “clumping.” Marker-SNPs in LD with each other in a given 
locus are “thinned,” retaining only the marker-SNP with the lowest p-value. 
After this is done for every region of LD, the remaining SNPs are assumed to 
be “independent” of each other and hence, not in LD. These are typically 
referred to as “lead” SNPs.

Whether any two SNPs are in LD is a matter of probability, not certainty. 
Researchers use as a measure of the strength of correlation between any 
two marker-SNPs (i.e., in a pairwise comparison) either a coefficient of 
linkage disequilibrium (D´) or, more commonly, an r2, which is equivalent 
to the Pearson correlation coefficient. LD can range from 0 (no correlation) 
to 1 (perfect LD). Inasmuch as most marker-SNPs are not in perfect LD, it 
is up to the researcher to choose the threshold level beneath which SNPs 
will be considered not to be in LD. This creates a potentially significant 
problem for clumping inasmuch as, in the absence of any agreed upon 
threshold, most researchers select an arbitrarily chosen one (Wray et 
al. 2013). What is more, the variation in techniques for dealing with LD 
extends beyond choosing different clumping thresholds (Choi et al. 2020). 
Some algorithms do not assign all SNPs whose pairwise r2 with the lead 
SNP exceeds the user-specified cutoff to the lead SNP’s “clump,” but only 
a subset of these SNPs whose distance to the lead SNP is below some 
cutoff (e.g. 250 kb). Other algorithms involve a second stage in which 
lead SNPs that are physically close to each other are merged and consid-
ered to be a single “locus.” 

 Figure 1. Illustration of Linkage Disequilibrium

a.

b.

c.

d.
e.

f.

a. Chromosome 1. The region 1q32 on the 
chromosome (to the right) is amplified in b.
b. Amplification of region 1q32 of chromosome 1.
c. SNPs (or marker SNPs) in region 1q32 of 
hromosome 1. Beneath each SNP is shown its 
two forms and where it is located. For example, 
SNP rs2073186 occurs as either a C or a T. It is 
located in an “intron” or non-coding part of a gene. 
SNP rs2243191 occurs as a C or T. It is located 
in a protein coding region of a gene and causes a 
change in a single amino acid (the building block of 
proteins) from S (serine) to F (phenylalanine). UTR 
stand for an “untranslated region” that is located 
at the beginning and end of a gene.

d. Three genes in which the SNPs are located – 
IL-19, IL-20, and IL-24 - as well as intergenic regions 
(in white).
e. Two LD blocs or haplotypes in region 1q32 
Bloc 1 is 30 kb long and bloc 2 is 31 kb. The
numbers 1-13 correspond to the SNPs shown in c.
f. Chart showing degree of LD between any two 
of the 13 SNPs. The numbers in the boxes are a 
coefficient of linkage disequilibrium (D′) which ranges 
from 0 to 1. For example, the coefficient of LD 
between SNP 1 (rs2073136) and SNP 3 (rs2243188) 
is .99, indicating high LD. By contrast, the LD score 
between SNP 6 (rs2981572) and SNP 9 (rs1518108) 
is only .7.

Representation of two haplotypes or LD blocks on chromosome 1.
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ii. Infinite Infinitesimal Alleles
All of the studies considered henceforth involving GWAS, SNP-heritability 
estimates, and polygenic scores, as well as the vast majority of such studies 
in general (and certainly all of the most well-known studies) are limited to 
“whites of European ancestry.” The reason for this extraordinary limitation 
will be considered below (and the reader’s forbearance is requested). In the 
meantime, what is typically mentioned as an aside in the published studies 
themselves and excluded altogether from accounts of the studies, will be 
highlight by indicating that the study is limited to whites of European ancestry 
(WoEA). 

In 2010, researchers reported the results of a GWAS of “childhood general 
cognitive ability” using an array of more than 350,000 SNPs and a popula-
tion sample of 7900 7-year-old WoEA (Davis et al. 2010). They summed 
up their findings as follows (2010, 760):

Despite our large sample size and three-stage design, the genes associated with child-
hood g [“general intelligence”] remain tantalizingly beyond our current reach providing 
further evidence for the small effect sizes of individual loci. Larger samples, denser 
arrays and multiple replications will be necessary in the hunt for the genetic variants 
that influence human cognitive ability. 

While it is odd to claim that their study provided evidence for an associa-
tion that they failed to find, the assumption that alleles of small effect size 
underlie heritability, and that larger samples and larger SNP arrays would 
be needed to find them, is based in part on the results of GWASs of height. 
Height is considered a highly heritable trait. The first GWAS of height in 
2007 examined 365,000 marker-SNPs in an initial sample of nearly 5000 
WoEA and identified a single SNP in the “non-translating” region of the 
HMGA2 gene as being “strongly” associated with height (Weedon et al. 
2007). A subsequent study of WoEA identified two additional SNPs (Sanna 
et al. 2008). As McEvoy and Visscher wrote of these findings at the time 
(2009, 298): 

[The effect sizes of these alleles] were surprisingly small and possibly bitter to the 
hopes of many GWAS investigators. The “tall” allele of the SNP in the HMGA2 gene 
most strongly associated with height (compared to the other allele which is relatively 
‘short’) increases a person’s height by just about 0.4 cm and explains only 0.3% of the 
total phenotypic variation in normal height across the population [of WoEA].

Findings such as these—the purported identification of alleles that explained 
only a fraction of attribute variation—were given theoretical support by the 
resurrection of, or reemphasis on, the “infinite infinitesimal allele” model, first 
proposed by Fisher more than 100 years ago (Fisher 1990 [1918]). Fisher 
was concerned with variation in what we would call “complex traits”: com-
mon traits that were not caused by the inheritance of one or two alleles (for 
example, as seen in so-called monogenic disorders caused by mutations on 
a single gene). He proposed that the heritability of complex traits involved 
the inheritance of an indefinitely large (“infinite”) number of alleles, each 
allele contributing a miniscule (“infinitesimal”) amount to trait heritability. In 
modern terms, this would be described as “massive polygenicity.” 

The contribution of alleles to heritability was primarily additive (the same 
assumption that underlies the additive model of heritability). That is, the 

average mathematical effect of two or more alleles on trait heritability in 
a population is equivalent to the sum of their average individual effects in 
that population. While the average effect of any individual allele might be 
insignificant, what was not insignificant was the combined average effect 
of all of those alleles. The infinite infinitesimal allele model has become a 
“new” old dogma in behavior genetics.

Crucially, this dogma serves as a justification for the apparently limitless ex-
pansion of sample sizes under the assumption that massive samples will be 
needed to have sufficient power to find many alleles of tiny effect size. To 
achieve ever larger samples sizes, researchers have taken to combining the 
data from multiple different GWASs, usually in the form of summary statistics, 
and performing a metanalysis on the combined data. Combined sample 
sizes can now exceed one million and involve the testing of 10 million SNPs 
(Lee et al. 2018a). 

Recall that the Bonferroni correction involves dividing the a level (.05) by the 
number of tests performed. Ten million tests should, theoretically, involve an 
a level ≤ 5 x 10-9, not 5 x 10-8 (the level for 1 million tests). The latter, how-
ever, is still commonly employed as the threshold for genome wide signifi-
cance. In fact, as we shall see, the most highly touted application of GWAS 
data—polygenic scores—involves setting an a level ≤ 1, which amounts to 
discarding any statistical correction for multiple hypothesis testing. 

Psychologist Eric Turkheimer, also known for the first law of behavior genet-
ics, has commented (2018) that the modus operandi “of increasing sample 
size endlessly until some unpredicted correlation reaches an arbitrary level 
of significance sounds a lot like p-hacking.” He notes:

Suppose Brian Wansink, the nutrition researcher who was brought down by revelations 
of p-hacking and other questionable research practices, had adopted the following 
strategy in response to criticism of his experiments. Instead of designing individual 
studies with hypotheses that were always susceptible to hacking, he got funding for an 
enormous nationwide program that monitored pizza restaurants across the country. The 
behaviors of hundreds of thousands of pizza eaters were recorded, as were many 
thousands of tiny characteristics of the environments they ate in. Then they searched 
for correlations between characteristics of restaurants and eating behaviors, at stringent 
levels of significance. At first, nothing is significant, so the samples were pushed up from 
hundreds of thousands to nearly a million pizza eaters, and finally, some significant 
“hits” emerge. It turns out that eating in a pale green restaurant is associated with a 1 
milligram increase in pizza consumption, R2=.0004, p < 10-8.

However, in the eyes of many in the behavior genetics community, Fisher 
has been proved right, and the practice Turkheimer refers to as “p-hacking” 
has been vindicated (Visscher and Goddard 2019). Such a conclusion is 
reached because, unsurprisingly, the larger the sample sizes have grown 
and the more SNPs tested, the greater the number of SNPs that are said to 
have genome wide significant correlations with behavioral attributes. 

For example, consider several metanalyses of “educational attainment,” mea-
sured as the number of years of schooling that individuals reported having 
completed (EduYears). In 2013, researchers performed a metanalysis of the 
combined data from 64 studies (or “cohorts”) across Europe and the United 
States totaling 126,559 WoEA. Using a standard GWAS significance level 
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of p=5 x 10-8, they reported one significant SNP for educational attainment 
(Rietveld et al. 2013). By 2016, using a sample of 293,723 WoEA, re-
searchers reported 74 GWAS significant marker-SNPs (Okbay et al. 2016). 

And in 2018, with a combined sample of more than 1 million WoEA from 
71 different GWASs and combined microarray data for more than approx-
imately 10 million SNPs, researchers reported the identification of 1,271 
GWAS significant marker-SNPs (Lee et al. 2018a). A similar pattern has 
been observed for a number of other behavioral attributes, such as “general 
cognitive function” (Davies et al. 2018). In line with the infinite infinitesimal 
allele model, each of the lead SNPs that have been identified thus far for 
educational attainment—or intelligence or income—accounts for only a 
tiny fraction of the supposed heritability of these attributes. For example, Lee 
et al. (2018a) report that of the 1,271 lead SNPs that they identified for 
EduYears, the median effect size of each SNP accounts for only 1.7 weeks 
of schooling. 

Given that the postulated causal SNPs could lie anywhere in a region of LD 
to the lead SNPs, one would assume that without somehow tracking down 
the “actual” causal alleles, nothing more could be said concerning biolog-
ical causation. This obstacle, however, has not stopped researchers from 
proposing elaborate schemas involving the interactions of multiple specific 
genes. For example, in their study of EduYears, Lee et al. (2018a, p. 1114) 
note the following:

[W]e applied the bioinformatic tool DEPICT and found that, relative to other genes, 
genes near our lead SNPs were overwhelmingly enriched for expression in the central 
nervous system. The SNPs implicate genes involved in brain-development processes and 
neuron-to-neuron communication[.]

It is not entirely clear what the authors mean here by “near,” “enriched,” or 
“implicate.” That said, there is nothing particularly distinctive about a gene 
being expressed in the brain. Brain tissue is characterized by a high level 
of gene expression and at least 30–50% of approximately 20,000 pro-
tein-coding genes are expressed across all parts of the human brain 
(Naumova et al. 2013). 

The authors also note that they used a “fine-mapping” statistical software 
program (CAVIARBF) to identify likely causal alleles within 50 kb of their 
1274 lead SNPs. One of these was a nonsynonymous SNP (rs61734410) 
in the gene CACNA1H (meaning that the alternate form of the SNP results 
in the synthesis of a different amino acid in the resulting protein). As they 
note, CACNA1H is used to synthesize a calcium channel protein that plays 
a role in neuronal excitability. However, any involvement of CACNA1H is 
simply speculation or, perhaps, wishful thinking. 

The authors fail to mention other genes “prioritized” by their fine-mapping 
statistical software program (Lee et al. 2018, Supplementary Table 2), such 
as PPIP5K2, mutations of which have been associated with various forms of 
deafness; PRKAG2, transcribed to synthesize a protein involved in respond-
ing to energy demands in cardiac muscle and associated with various forms 
of heart disease; EPB41L3, transcribed to synthesize erythrocyte membrane 
protein and implicated in several forms of cancer; and many genes of 
unknown function. 

Among the SNPs in LD with their lead SNPs, the authors are cherry picking 
and highlighting SNPs in genes whose functions they believe accords with 
the nature of EduYears (i.e., completing high school involves the brain and 
neurons). This is now a widespread practice (see, for example, the discus-
sion of the neurobiology of income in Hill et al. [2019]). A more formal and 
perhaps more informative expression for “cherry picking” is the fallacy of 
incomplete evidence, which consists of pointing to individual cases or data 
that seem to confirm a particular position and simultaneously skipping the 
many cases and data that, while perhaps not necessarily contradicting one’s 
position, do not support it. 

What is perhaps most misleading about highlighting SNPs in specific genes 
and using them to construct diagrams of genetic etiology (of risk) is that, 
according to researchers’ own assumptions, the effect of any one of these 
genes on risk is miniscule (e.g., according to Lee at al. [2018] the SNP 
rs10189857 has an effect size on EduYears of 0.0158). These sizes are so 
small that it is inconceivable that the role of any of the unknown SNPs with 
which the lead SNPs are presumed to be in LD could ever be demonstrated 
or analyzed in an experimental manner. Of course, one could “knock-out” 
the proposed gene in a mouse (i.e., engineer a mouse that lacks the gene), 
or find a family that lacks the gene, which would be a way of distorting 
the findings by transforming what is insignificant-- and one effect among 
millions--into the sole main effect or cause. Effect sizes this small only make 
sense in the statistical realm not in the biological realm.  

iii. LD, CNVs, and Somatic Mosaicism
When researchers discuss lead “loci” characterized by LD, they generally 
mean contiguous stretches of DNA extending, on average, several hundred 
kb upstream and downstream from lead SNPs (250 kb is a commonly cited 
number). However, LD can span regions of a chromosome more than 1Mb 
apart in what is known as long range linkage disequilibrium (LRLD), which 
occurs throughout human genomes. Perhaps the most familiar example of 
LRLD concerns the short arm of chromosome 6 in a region known as the 
major histocompatibility complex (MHC), which plays a key role in the 
immune system, where thousands of SNPs exhibit LRLD across a region in 
excess of 1.5Mb. 

However, recent analysis has revealed that LRLD in excess of 5Mb is com-
mon across the human genome (Park 2019; Nelson et al. 2020; Price et al. 
2008; Koch et al. 2013). To the extent that LRLD is not taken into account, 
the result can be a significant overcounting of marker-SNPs presumed to be 
“independent” (i.e., not in LD with each other). This is not an idle concern. 
Park et al. (2019) have shown that significant sites from GWAS catalogues 
mostly overlap regions of LRLD, and that because GWASs typically do not 
evaluate whether an SNP correlation arises from LDLR, they will incorporate 
“false signals.”

There remains one final, but crucial, point to make concerning SNPs and 
LD. Copy number variations (CNVs) are a common type of DNA variation, 
ranging from 50 bp to 10 Mb and involving DNA deletions, duplications, 
higher order amplifications (e.g., triplications, quadruplications), inser-
tions, and inversions, as well as more complex rearrangements. In human 
genomes, CNVs involve more DNA sequences than SNPs. CNVs less than 
500 kb in size cover 12% (approximately 360 Mb) of the human genome 
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(Torres et al. 2020), and the number is likely much higher inasmuch as the 
full extent of CNVs in human DNA is still unknown. 

CNVs can be inherited and are responsible for more than ten times the 
heritable sequence differences in general populations (Pang et al. 2010), 
but they can also arise somatically during cell divisions at any point in 
the life course. CNV deletions can result in the loss of an entire gene and 
duplications can result in multiple copies of a single gene. CNVs are known 
to play a causal role in a number of disorders including cancer and to 
affect certain physiological responses (Hu et al. 2018) . For example, the 
protein cytochrome P450 monooxygenase, synthesized from the CYP2D6 
gene, plays an important role in drug metabolism. Because of CNVs, the 
“normal” number of CYP2D6 genes can range from zero to ten, leading to 
decreased or increased drug metabolism (Jarvis et al. 2019).

Identifying CNVs still presents a number of technical challenges (Jenko Biz-
jan et al. 2020) and with the exception of a few very common CNVs (such 
as those involving the CYP2D6 gene), genomic reference data used with 
SNPs does not include CNVs. The coexistence of SNPs with unrecognized 
or unaccounted for CNVs can result in significant distortions. Thus far, about 
10% of SNPs across the genome have been found to map to the same 
genomic regions as common SNPs (Liu et al. 2018). 

To give just one example of the kind of distortions this could produce, 
consider it is common practice to infer the identity of SNPs that have not ac-
tually been genotyped on the basis of their presumed LD with marker-SNPs 
that have been genotyped. CNV losses, for example, could entail that in 
a segment of a study population, certain SNPs presumed to be in LD do 
not exist because the segment of DNA on which they are presumed to lie 
has been deleted. Alternatively, CNV gains could entail that certain SNPs 
presumed to be in LD exist in multiple copies because the genes in which 
they are located exist in multiple copies.

iv. A Second Replication Crisis?
Are the marker-SNPs that are identified as “lead” for a given attribute consis-
tently replicated across studies? This question is not easily answered insofar 
as different researchers use different algorithms for dealing with LD and for 
identifying lead marker-SNPs, including using different arbitrary thresholds for 
determining which marker-SNPs are in LD in the first place (see III.i, above). 
When researchers list their lead marker-SNPs, it is reasonable to ask wheth-
er they are replicated across studies. 

Let us assume that, in this context, “lead” at the very least denotes a genome 
wide significant marker-SNP that has a p-value lower than all of the other 
marker-SNPs with which it is assumed to be in LD (according to whatever cri-
teria are used in this determination). With that as a preliminary, the answer is 
that lead SNPs are not consistently replicated across studies.

Consider, for example, four large metanalyses of EduYears of WoEA: Lee 
at al. (2018a), Davies et al. (2018), Lam et al. (2017), and Okbay et al. 

(2016).9  Limiting ourselves to the unique marker-SNPs found to be genome 
wide significant in each study at p≤5x10-8 yields 4819 SNPs across the four 
studies. Of these, no SNP was replicated in all of the studies, 3.5% were 
replicated in more than one study and of these, 97% were replicated in only 
one other study. 

Or consider six large metanalyses of “intelligence”/“cognitive ability” of 
WoEA: Coleman et al. (2019), Hill et al. (2019), Savage et al. (2018), 
Davies et al (2018), Lam et al. (2017), and Sniekers et al. (2017). Limiting 
ourselves to the unique marker-SNPs found to be genome wide significant at 
p≤5x10-8 yields 1906 SNPs in total across the six studies. Of these, no SNP 
was replicated in all of the studies, 11% were replicated in more than one 
study and of these, 76% were replicated in only one other study.    

The poor record of replication for purportedly “independent” and genome 
wide significant “lead” marker-SNPs goes largely unnoticed - or if it has 
been noticed it has not been publicly addressed, despite the fact that 
these same SNPs are often used to construct elaborate stories of genetic 
causation of risk. What is more, these marker-SNPs, along with SNPs that 
fail to achieve genome wide significance, are used in the construction of 
polygenic scores.

IV. Polygenic Scores
The poor record of replication for purportedly “independent” and genome 
wide significant “lead” marker-SNPs goes largely unnoticed. This is likely 
because the primary focus today is not on identifying individual genome 
wide significant SNPs—despite the fact that they are often used to con-
struct elaborate stories of genetic causation (of risk)—but in constructing 
so-called polygenic scores. 

A polygenic score is intended to be a single value estimate of an individ-
ual’s genetic risk for an attribute, whether Type I diabetes, educational 
attainment, or anything in-between. Take the example of constructing a 
polygenic score for a “trait” treated as dichotomous, such as “graduated 
high school.” Suppose that a given GWAS, or a combination of them, 
contain information on 1 million SNPs for 100,000 persons as well as 
self-reported information as to whether each respondent graduated high 
school. For each of the 100,000 members of the sample, the data would 
show whether the respondent completed high school and which SNP 
allele she possessed for each of 1 million marker-SNPs on a chip array. 

All of the individual data could then be combined into “summary statistics,” 
which present the results of the GWAS in the form of population averages. 
For each SNP, the summary statistics will identify the “effect allele” (A1), 
the marker-SNP allele that shows a correlation with high school comple-
tion, which can be either positive or negative, and the other allele (A2), 
the frequency of A1 in the population, and the average effect size of A1 
on college completion (in the form of an odds ratio or a a for a quantita-
tive trait); the standard error (SE); and the p-value of the association (see 
Table 1).

9 All of the data for all of the lead SNPs for all of these studies is available at GWAS Catalog (https://www.ebi.ac.uk/gwas/).
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Suppose that we wanted to construct a newborn’s polygenic score for com-
pleting college and suppose that her genotype for marker-SNP rs4686944 
in Table 1 was GG, which is two “effect,” or “risk” alleles. Based on our 
summary statistics, we would multiply the effect size of this allele (0.029) 
by the number of risk alleles she has (2). We would repeat this process 
for each of her 1 million marker-SNPs and sum the results. After assorted 
tweaking and testing, in theory this sum would tell us the newborn’s “genetic 
risk” for completing high school.

However, in reality it does no such thing. Polygenic scores for educational 
attainment or intelligence or income have no individual predictive value 
whatsoever, and it is an open question as to whether any individual poly-
genic scores for any phenotype have predictive value. This might come as 
a surprise given all of the hype surrounding the implications of being able to 
predict someone’s genetic risk for doing well in school when they are still in 
the womb. 

What then, do polygenic scores for educational attainment, intelligence, 
and income actually “predict”? The answer is that they predict a percentage 
of variance of attribute risk in a population. This is tantamount to constructing 
a heritability estimate of that population on the basis of differences in allele 
frequencies. 

Still, insofar as polygenic scores predict far less trait variance than SNP-her-
itability estimates (not to mention twin studies), they are referred to simply as 
explanations for a certain amount of variance of trait risk in a population. 
On the population level, a polygenic score is said to be predictive if the 
average polygenic score in the case group is higher than the average poly-
genic score in the control group, or, for instance, if the average polygenic 
score of those in the lowest decile of educational attainment is lower than 
those in the highest decile. 

Consider a polygenic score of “educational attainment” (Plomin and von 
Stumm 2018). This polygenic score was constructed to predict students’ 
performance on the General Certificate of Secondary Education (GCSE) 
examination. According to the authors (2018, p. 156), a scatter plot 
between a polygenic score of educational attainment and GCSE scores 
(Figure 2a.) indicates, “the difficulty of predicting individual outcomes when 
the correlation is modest (0.30 in this example).” Squaring this correlation, 
they estimate that the polygenic score predicts 9% of the variance in risk in 
their study population, while noting that (2018, p. 156), 

Although higher [polygenic scores] can be seen to predict higher GCSE scores on 
average, there is great variability between individuals…[I]ndividuals within the lowest 
and highest [polygenic score] deciles vary widely in school achievement…The overlap 
in the two distributions is 61%. [see Figure 2b]

However, on a more optimistic note they comment, 

Despite this variability, powerful predictions can be made at the extremes. For example, 
when the sample was divided into ten equal-sized groups (deciles) on the basis of their 
EA2 GPS [EA2 is their study population and GPS stands for “genetic polygenic score”], 
a strong relationship between average EA2 GPS and average GCSE scores emerged that 
was most evident at the extremes [see the Figure 2c]. Specifically, the average school 
achievement of individuals in the lowest EA2 GPS decile is at the 28th percentile. For 
the highest EA2 GPS decile, the average school achievement is at the 68th percentile. 

It is common practice to divide a polygenic score into lowest and highest 
deciles or quintiles—and then note what seems like an impressive difference 
in the mean prevalence between the lowest and highest decile/quintile. For 
example, Lee et al. (2018b, p. 129) point out that, “Comparing the 1 and 5 
quintiles, there is a 45.4-percentage-point difference in college completion 
in Add Health and a 35.5-percentage-point difference in the HRS [Add 
Health and HRS are their two training samples].” 

But what at first glance seems like a notable differentiation is simply a gener-
al property of small correlations: Given large enough sample sizes, looking 
at the extremes will produce what appear to be large differences, even 
though the magnitude of the relationship is small. Finally, Plomin and von 
Stumm (2018, p. 156), reflecting on the poor individual predictive power 
of their polygenic score, have recourse to a familiar refrain: “As bigger and 
better GPSs [genetic polygenic scores] emerge, the predictive power will 
increase.” 

Although the focus has been on behavioral attributes, a word here concern-
ing claims of polygenic prediction with more direct medical implications 
is in order. In two highly publicized studies (Khera et al. 2018; Inouye et 
al. 2018), researchers reported that polygenic scores for several common 
disorders including coronary artery disease, could be used as the basis 
for medical intervention. These scores were derived from, and intended to 
be predictive for, WoEA. For example, according to Khera et al. (2018), 
their polygenic score for coronary artery disease  could identify 5% of the 
individuals at highest risk with an odds ratio of 3.34. 

However, odds ratios compare odds in the tail ends of a single distribu-
tion, which ignores the majority of persons who will or will not develop 
the disease but fall in the region between the tails of the distribution. If this 
odds ratio is converted into a measure of predictive performance, it shows 
a coronary artery disease detection rate of 15% with a 5% false positive 
rate—and would thus miss 85% of affected individuals (Wald and Old 
2019). This is not much better than identifying people at random. At present, 
polygenic scores are not accepted by the medical community for any kind 
of medical intervention.

Table 1: Simplified summary statistics for a single SNP-allele for a hypothetical study of college completion.

Marker Name 
(designation of a particular marker-SNP)

A1
(effect allele)

G

A2

T

Frequency 
A1

.02041

Effect size

0.029

SE

0.01087

Pval

4.41E-02rs4686944
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Figure 2. The use of genome-wide polygenic scores to predict individual outcomes

 

 
Figure 1. Adapted from Plomin and von Stumm (2018).
 
a. Scatterplot between EA2 polygenic score percentiles and GCSE score percentiles; b. Population distribution of polygenic scores (normally distributed). Shows that the 
average polygenic score for those who score higher on the GCSE is slightly higher. On this basis, the authors predict that their polygenic score predicts 9% of the variance in 
genetic risk. The overlap in the two distributions is 61%; c. Division of the sample into ten equal-sized groups (deciles) on the basis of their EA2 polygenic score. Shows the 
relationship between average EA2 polygenic scores and average GCSE scores.

i. Training the Score
The construction of a polygenic score begins, as noted, with the summary 
statistics from various GWAS. This is referred to as the discovery sample. 
The score is then further developed on a training sample, which must be 
entirely separate from the discovery sample. 

A good deal of confusion is generated by the lack of a consistent terminolo-
gy for these samples. What this paper refers to as the training sample is also 
called, variously, the target, validation, prediction, and replication sample. 

Apparently, the objective of researchers is to modify the manner in which 
the polygenic score is constructed to achieve as high an R-squared in the 
training sample as possible. R-squared, or the incremental R-squared statistic, 
is a statistical measure that represents the proportion of the variance for 
a dependent variable (in this case, risk of a phenotype of interest) that is 
explained by an independent variable or variables (marker-SNPs) in a 
regression model. The higher the R-squared, the more of the variation in the 
data that the polygenic score explains.
Researchers have an enormous amount of freedom in determining how 
to construct their polygenic score so as to achieve the largest possible 
R-squared. For example, one might assume that in the construction of a 
polygenic score, only the values associated with marker-SNPs that achieve 
genome wide significance with a Bonferroni correction of p=5 x 10-8 would 
be included. 

It is now an accepted practice to try out different p-values for inclusion of 
marker-SNPs in the polygenic score, ranging from p=5 x 10-8, which would 

entail the inclusion only of genome wide significant marker-SNPs, all the 
way up to p=1. P=1 is the absence of any statistical correction for (massive) 
multiple hypothesis testing and results in the inclusion of estimated effect 
sizes for a million or more marker-SNPs in the construction of a polygenic 
score. 

The freedom to choose p-values in this way, including p=1, so as to 
achieve the largest R-squared possible, might seem a willful disregard for 
the consequences of multiple hypothesis testing and data mining. But as the 
saying goes, the proof is in the pudding. For example, Lee et al. (2018a), in 
constructing their polygenic score of EduYears, tried out four different p-value 
thresholds: p<5 × 10−8, 5 × 10−5, 5 × 10−3 , and 1. They note that their 
R-squared increased from 3.2% at p<5 × 10−8 to 9.4% at p≤1. Trying out 
different p-values and choosing the one that leads to the construction of a 
polygenic score with the highest R-squared (which is invariably p=1) is now 
common practice.

Therefore, choosing a significance threshold of p≤1 is justified by its appear-
ing to work. It enables researchers to achieve a higher R-squared. More-
over, it also accords with the narrative of infinite infinitesimal alleles. Because 
the effects of the SNPs are infinitesimal, the Bonferroni correction—or any 
correction—is too stringent. Furthermore, what is statistically significant is not 
the effect of any individual SNP but their combined effect. Doubtless any 
polygenic score constructed in this manner will contain many marker-SNPs 
that have no effect whatsoever on phenotypic risk, but by containing many 
more that do and otherwise would have been excluded, a threshold of p≤1 
is justified.
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There are many, many other decisions that researchers can make in their 
quest for the highest R-squared including trying different algorithms embod-
ied in different software programs to determine the weighting of individual 
SNPs, or determining how many principal components to use in trying to 
deal with population stratification (see below), or how to account for “win-
ner’s curse,” or which cutoffs to use for minor allele frequency. In addition 
to setting the statistical threshold at p≤1, Lee et al. (2018a, p. 1115) also 
note that they were able to achieve a yet higher R-squared of 11.4%—the 
figure they ended up using in the end—when, in addition to using p≤1, 
they switched from removing SNPs in linkage disequilibrium with each 
other to using the software LDpred, “a Bayesian method that weights each 
SNP by (an approximation to) the posterior mean of its conditional effect, 
given other SNPs.” In this study, when the authors controlled for household 
income and the educational attainment of the mother or father, the score’s 
incremental R-squared dropped to 4.6%. 

All of this “freedom” on the part of researchers is a recipe for model over-
fitting. When a researcher has so many proverbial “degrees of freedom,” 
that is, when one is free to try so many different analytic alternatives and 
value thresholds to achieve a preferred result, including setting significance 
thresholds, the likelihood of creating a manufactured rather than real statis-
tical correlation is quite high. 

Defenders of this approach might argue that they employ all sorts of 
significance tests every step of the way, but the tests used, and the values 
deemed confirmatory, are themselves largely a matter of researcher dis-
cretion. All data sets have random quirks; an overfit model will incorporate 
these quirks to such an extent that that the model ends up explaining the 
random error present in the data. Hence, an overfit model will not be 
generalizable because it describes the random error in the data rather 
than the relationships between variables. 

Ultimately, the regression coefficients represent noise rather than genuine 
relationships in the population. Inflated R-squared values are a symptom of 
overfit models, and overfit models are a common occurrence when 
researchers chase a high R-squared. 

The problem of overfitting is exacerbated by the fact that in constructing 
polygenic scores, there are more predictors (p), in the form of individual 
SNPs, than number of persons (n) in the sample. For example, the study of 
Lee et al. (2018) has a sample size of 1.1 million and 7.1 million predictors 
(i.e., SNPs). Each person (i.e. one observation) has millions of possible 
gene combinations. When there are more predictors than samples in the 
dataset, the researcher is confronted with a problem of “big-p, little-n” (p 
>> n), sometimes referred to as the “curse of dimensionality” (Altman and 
Krzywinski 2018). 

In short, it describes what happens when you add more and more 
variables or “dimensions” (in this case, SNPs) to a multivariate model. 
The more dimensions added to a data set, the more difficult prediction 
becomes. While one might assume that more is better, when it comes 
to adding variables, the opposite is true. Each added variable results in 
an exponential decrease in predictive power. Such dimensionality can 
cause models to behave one way when devised in one sample, and in a 

completely different and unpredictable way when applied to a different 
sample (Hastie and Tibshirani 2003).

It is for this reason that, according to the “gold standard,” a polygenic 
score developed on a training sample should be tested, prior to any 
claims that it actually predicts anything, on a third sample entirely separate 
from both the discovery and training samples (Choi et al. 2020). For the 
sake of clarity, let us refer to this as the “independent validation data set.” 
Frequently, this is not done. 

Sometimes, researchers will remove one or two study “cohorts” from their 
discovery sample (which consists of numerous cohorts), use these excluded 
cohorts as their training sample, and publish results derived from the train-
ing sample. Given the impetus to combine ever larger numbers of cohorts 
in an attempt to create ever larger discovery samples for metanalyses, find-
ing a sufficiently large third independent sample is becoming increasingly 
difficult. 

To be sure, there are a number of statistical algorithms designed to deal 
with the problem of model overfitting in the absence of a third indepen-
dent sample and to estimate how accurately a predictive model will per-
form in practice, such as “cross-validation.” Cross-validation uses a single 
training sample that is then split into smaller “training” and “validation” 
subsets. In discussing a recent study of the performance of cross-validation 
based on real-world fraud experiments using 2013 to 2016 Medicare 
claims data, the authors note (Bauder et al. 2019, p. 19):

In real-world production applications, it is critical to establish a model’s usefulness 
by validating it on completely new input data, and not just using the cross-validation 
results on a single historical dataset. In this paper, we present results for both 
evaluation methods, to include performance comparisons…Using this Medicare case 
study, we assess the fraud detection performance, across three learners, for both 
model evaluation methods. We find that using the separate training and [validation] 
sets generally outperforms cross-validation, indicating a better real-world model 
performance evaluation. 

Simply put, estimating predictive performance is inferior to observing it in 
action in the real world.

There is growing evidence that polygenic scores consistently are overfit 
models. For example, Mostafavi et al. (2020, p. 6) demonstrated that “the 
portability of a polygenic score [for WoEA] can vary markedly depending 
on sample characteristics of both the original GWAS and the prediction 
set, and that this variation in prediction accuracy can be substantial.” 

Variation in the samples for such things as percentage of male versus 
female participants, or the percentage of persons in various age or 
socio-economic categories, were all shown to have a substantial impact 
on polygenic score accuracy. In fact, all published polygenic scores are 
overfit models to the extent that they are limited to WoEA and cannot be 
applied to persons of any other ancestry. They are not “portable” outside 
this category; in other words, they are not generalizable. However, as 
we shall see, limiting studies to WoEA does not solve the problem it was 
intended to.
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V. Population Stratification
All of the studies cited, as well as the vast majority of such studies today, 
are performed exclusively on what are referred to as “persons of Europe-
an descent,” referred to here as “whites of European ancestry” (WoEA). 
Non-WoEA are typically viewed in terms of other racial categories, which 
include, at the very least, Africans, Asians, Native Americans,  
and Oceanians. 

Persons considered non-WoEA are intentionally excluded from every study 
population. The reason is that when non-WoEA are included in either the 
discovery, training, or third, independent replication sample (assuming that 
there is one), the predictive power—that ever-important R-squared—goes 
way down. As Lee et al. note of their study (2018a, p. 1115):

Because the discovery sample used to construct the score consisted of individuals of 
European ancestry, we would not expect the predictive power of our score to be as 
high in other ancestry groups. Indeed, when…used to predict EduYears in a sample 
of African-Americans…the score only has an incremental R2 of 1.6%, implying an 
attenuation of 85%. 

Of course, their discovery sample was limited to WoEA by design. 

Why then, must a polygenic score be constructed exclusively from a 
discovery sample of WoEA and be applied, for purposes of prediction, 
only to WoEA? Why, otherwise, will the R-squared go way down? The 
explanation comprises two elements: first, the well-known phenomenon 
of population differences in such things as allele frequencies, haplotypes, 
degree of linkage disequilibrium, and degree of genetic diversity, and sec-
ond, the fact that marker-SNPs and maps of linkage disequilibrium upon 
which both GWAS and polygenic scores depend have been developed 
almost exclusively from studies of WoEA (Popejoy and Fullerton 2016).

Differences in what can be called genetic population characteristics—
which are often characterized as differences in allele frequencies—are 
the result of different population histories and can be influenced by such 
things as differences in migratory patterns, founder events and population 
bottlenecks (loss of genetic variation that occurs when a new population is 
established by a very small number of individuals from a larger popula-
tion), population expansions, relative population isolation, endogamy, 
inbreeding, adaptive pressures, and genetic drift (a random change in 
allele frequencies). With the exception of genetic drift, which is stochastic, 
all of these processes are environmental and often cultural, as in the case 
of endogamy, for example.10 Genetic population characteristics are 
highly correlated with geography although the sharing of certain allele 

frequencies between populations need not entail a shared ancestry or 
geographic origin. 

The assertion that a study has been limited to WoEA generates the impres-
sion that WoEA constitutes a single, clearly delineated population whose 
members are defined by certain shared population genetic characteristics. 
While researchers are aware of the existence of population genetic differ-
ences within WoEA, they believe that these can effectively be dealt with 
in a straightforward manner. Genetic difference of a sufficient magnitude 
to disrupt the construction of polygenic scores only occurs via the inclusion 
of non-WoEA. 

This belief—that researchers can effectively deal with what is known as 
population “structure” within WoEA, but not between WoEA and other 
ancestral groups—reinforces the idea of intra-group (relative) genetic 
homogeneity, inter-group genetic heterogeneity, and the significance of 
the system of classification (e.g. folk racial categories) based upon these 
presumed genetic differences.  

The problem with dividing all populations into five or six categories—
Europeans, Africans, Asians, Native Americans, Oceanians, as well as 
various “admixed populations” (such as Hispanic)—is that it presupposes 
clear genetic boundaries between these groups and ignores the significant 
amount of genetic heterogeneity within these groups. Both of these errors 
are important and of course, not entirely separate, but my focus here is on 
the latter.  

A population is said to be structured when it contains subpopulations that 
are often, but not exclusively, distinguished by geographic location and 
that exhibit systematic differences in population genetic characteristics 
(or allele frequencies). WoEA is clearly a structured population at every 
level, and the more fine-grained one’s analysis, the more nested levels of 
population structure appear. 

At the broadest level, one can speak of all Europeans as being descen-
dants of three original migratory populations from the Near East, North 
Asia, and (geographic) West Europe, and as bearing different mixes of 
genetic population characteristics that can be traced back to these groups 
(Lazaridis et al. 2014). As one moves away from this level, which is itself 
a heterogenous mix, and toward greater specificity, a good deal of addi-
tional genetic heterogeneity arises. 

To illustrate, the Finns experienced two major population bottlenecks over 
their history which reduced the population size as well as the genetic di-

10 As an aside, it is worth noting that in the worldview in which all beliefs (or differences in all beliefs) that one would call cultural, such as the propriety of endogamy, are influenced by differences in allele frequencies, the practice of endogamy itself can be a 
cause of differences in allele frequencies.
11For examples of non-geographic/aancestral sharing of allele frequencies, consider the following. Tay-Sachs is a rare somatic recessive disorder caused by mutations in the HEXA gene. It is estimated that among “Europeans,” 1 in 300 persons is a carrier of 
the Tay-Sachs associated allele (a heterozygote) and 1 in 360,000 is an affected homozygote. By contrast, among Ashkenazi Jews (or persons of Ashkenazi Jewish descent) 1 in 27 are carrier and 1 in 2900 have the disorder; among French Canadians of 
South Eastern Quebec, 1 in 30 is a carrier and roughly 1 in 3600 have the disorder; among the Cajun of Southern Louisiana 1 in 30 is a carrier and approximately 1 in 3600 have the disorder; and there are similarly high rates among certain Amish commu-
nities. With the exception of the French Canadians of South Eastern Quebec and the Cajuns of Southern Louisiana, who share a common ancestry, none of the differences in allele frequencies among the remaining population can be due to common ancestry. 
Alternatively, consider blood type. The ABO blood group antigens are transcribed from the ABO gene, which has three alternative allelic forms—A, B, and O. About 21% of all humans have at least one A allele, with the highest frequencies found in small, 
unrelated populations, and in particular the Blackfoot Indians of Montana (30-35%), the Australian Aborigines (many groups are 40-53%), and the Lapps, or Saami people, of Northern Scandinavia (50-90%).  
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versity. As a result (and perhaps also, as a result of cultural practices) Finns 
have a degree of genetic homogeneity that distinguishes them from other 
Europeans (Locke et al. 2019). But for all of their “genetic homogeneity,” 
Finns themselves exhibit regional population genetic differences such as that 
between eastern and western Finland (Lappalainen et al. 2006).

Consider an analysis of the genetic population structure of the United King-
dom. The ancestral population of the United Kingdom, which includes Great 
Britain, Northern Ireland, and many smaller islands (including the Hebrides, 
Shetland, and Orkneys), is structured, as are populations throughout the rest 
of Europe (Leslie et al. 2015). Genetic analysis has revealed a fine-scaled 
genetic structure of the British population composed of 17 distinct “clusters” 
that are highly localized (Leslie et al. 2015, p. 312):

Examples of fine-scale differentiation include the separation of: islands within Orkney; 
Devon from Cornwall; and the Welsh/English borders from surrounding areas. The 
edges between clusters follow natural geographical boundaries in some instances, for 
example, between Devon and Cornwall (boundaries the Tamar Estuary and Bodmin 
Moor), and Orkney is separated by sea from Scotland. However, in many instances 
clusters span geographic boundaries; for example, the clusters in Northern Ireland span 
the sea to Scotland. 

Structured populations, which are most populations, are considered an 
omnipresent threat to the validity of genetic association studies due to 
population stratification. Population stratification arises when differences  
in allele frequencies between cases and controls, ascribed to genetic  
risk factors, are actually due to ancestry related population genetic  
differences. 

For example, suppose our study population is composed of persons of 
ancestry A and ancestry B, who as a result of differences in migratory 
histories and/or patterns of endogamy and the like, exhibit differences 
in the frequencies of certain alleles. At the same time, there are structural 
social differences between A and B: Population A has been historically 
discriminated against and denied social opportunities, while population 
B has enjoyed all manner of social advantage. Suppose our “phenotype” 
was income or years of education. In constructing a polygenic score, the 
allelic differences we might ascribe to differences in “income predisposing 
alleles” might in fact be due to allelic differences between A and B arising 
from different ancestral population histories, and these population-level 
allelic differences would be associated with different social environments.

The two most widely used statistical methods for dealing with population 
structure are principal components analysis (PCA) and linear mixed models 
(LLM). PCA is used to identify patterns, or “axes of variation” that explain 
the greatest amount of variance in SNP allele frequency in the sample. In 
a GWAS, what typically accounts for the greatest amount of variation in 
SNP allele frequency (the first principal component) is not the attribute of 
interest, but the ancestries of the participants which often corresponds with 
a particular geographical region. 

Genotypes and phenotypes are adjusted by amounts attributable to 
ancestry along each axis. It is fairly common for researchers to do a PCA 
on the entire set of genotype data and then use the first 5, 10, or 20 prin-

cipal components as covariates in the association model. An alternative 
widely used approach is LLM, which incorporates both fixed and random 
effects, population structure being treated as a random effect.

Do these methods effectively deal with the problem of population  
stratification? There is strong evidence that they do not. 

In several studies, researchers reported that the average polygenic score 
for height increased from south-to-north across Europe (i.e., exhibited a 
“latitudinal cline”), paralleling average population differences in height 
from Italy to the Netherlands (Turchin et al. 2012; Berg and Coop 2014; 
Robinson et al. 2015; Zoledziewska et al. 2015; Berg et al. 2019b; Raci-
mo et al. 2018; Guo et al. 2018). The results of these studies were highly 
touted not only as multiply-replicated polygenic scores for height but also 
as an example of polygenic adaptation. Most of these studies were based 
on data assembled by an international collaborative effort known as the 
GIANT Consortium (The Genetic Investigation of ANthropometric Traits), 
consisting of the combined summary statistics from 79 individual GWASs 
totaling 253,288 persons of European ancestry from across Europe.
 
In subsequent studies (Berg et al. 2019a; Sohail et al. 2019) researchers, 
including some of the same individuals who had earlier published studies 
reporting evidence of polygenic adaptation for height, attempted to rep-
licate these findings using a larger sample from the UK Biobank. The UK 
Biobank contains GWAS and “health and well-being” data of 500,000 
volunteer participants from the UK. Researchers limited themselves to 
participants who self-identified as being of “white British ancestry” 
(N=336,474). This study population was both larger and more homoge-
neous in terms of ancestry than the population that comprised the GIANT 
Consortium from which the polygenic scores for height had been derived. 
They failed to replicate the original findings. As Berg et al. (2019a, p. 
14) noted of their results, “[W]hat once appeared an ironclad example 
of population genetic evidence for polygenic adaptation now lacks any 
strong support.” 

What both Berg et al. (2019a) and Sohail et al. (2019) concluded is that 
the differences in the polygenic scores for height were picking up ancestral 
population differences in allele frequencies between groups (such as the 
Italians and the Swedes) that had nothing to do with height. And they knew 
this because these scores did not identify differences in height in a more ho-
mogeneous population (or at the very least, the differences were significantly 
attenuated). Of their findings, Sohail et al. (2019, p. 1) commented, “[M]
ethods for correcting for population stratification in GWAS may not always 
be sufficient for polygenic trait analyses[.]” 
   
Doubts concerning the ability of current methodologies to deal with pop-
ulation stratification have continued. The UK Biobank, a large segment of 
which has been assumed to represent a single relatively homogeneous pop-
ulation—the population of persons of “white British ancestry”—itself exhibits 
population structure as indicated by principal components analysis (Cook et 
al. 2020; Haworth et al. 2019). This is not surprising given that, as noted 
above, “white British ancestry” does not constitute a structure-free population 
but rather a population composed of 17 distinct “clusters” that are highly 
geographically localized (Leslie et al. 2015). 
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Both Cook et al. (2020) and Haworth et al. (2019), showed that polygenic 
scores for traits including education, income, body mass index, hyperten-
sion, smoking, and alcohol consumption were associated with birth location. 
These associations with geography persisted even after the use of principal 
component analysis (involving up to 100 principal components [Zaidi and 
Mathieson 2020]) and a linear mixed model. Differences in all of these at-
tributes—education, income, body mass index, hypertension, smoking, and 
alcohol consumption—and many more are known to vary by geographic 
region throughout Great Britain. 

At the same time, allele frequencies are known to differ throughout Great 
Britain by geographic region due to differences in ancestral populations, 
providing a source of covariance between genotype and attribute that will 
lead to population stratification. As Haworth et al. note (2019, p. 6), “[T]his 
phenomenon is important, both as a source of ecological-level covariance 
between genotypes and geographically heterogeneous complex traits, and 
because of its apparent persistence across different analytical contexts and 
modes of statistical adjustment.” 

It is common for researchers to assume that siblings from the same parents 
are immune to population stratification because the genetic differences 
between them will be due to the random partitioning of parental genomes. 
Hence, it is common for researchers to attempt to replicate GWASs and 
polygenic scores using family-based studies. 

Recall that according to two separate studies, the once apparently iron-clad 
example of polygenic adaptation for height was shown to be confounded 
by population stratification. Prior to this, one of the confirmatory studies 
involved using SNPs ascertained from a sibling-based GWAS involving 
roughly 17,500 sibling pairs from European cohorts (Robinson et al. 2015). 
They reported that the north-south frequency gradient (i.e., polygenic 
adaptation) replicated using the sibling data. These results were consistent 
with, and in some cases even stronger than, the associations found using the 
GIANT data, but were inconsistent with the results obtained using the UK 
Biobank data. As Berg et al. note (2019a, pp. 3-4):

[M]ultiple lines of evidence suggest that population-structure confounding in GIANT and 
R15 sibs [the data set of approximately 17,500 sibling pairs] is the main driver of the 
discrepancy with UKB [UK Biobank]-based analyses… [B]oth the GIANT and R15 sibs 
GWAS are confounded due to stratification along the North-South gradient where signals 
of selection were previously reported.

Similar doubts concerning the absence of stratification in sibling data, also 
in relation to variation in height, are expressed by Cox et al. (2019). Zaidi 
and Mathieson (2020) have recently demonstrated that when SNPs are 
ascertained using a standard (non-sibling) GWAS discovery sample and the 
effect sizes are re-estimated in siblings, stratification in the polygenic score 
persists.

VI. Genetic Estimate Breeding Values
The end of a discussion of population structure is an appropriate place to 
mention genetic estimate breeding values (GEBV). Polygenic scores are 
based upon GEBV which are now used extensively in plant and animal 
breeding. They constitute the closest approximation to an empirical demon-

stration of the validity of polygenic scores and the assumption that genetic 
risk is influenced by an “infinite” number of infinitesimal alleles acting in an 
additive manner. Estimated breeding values (EBVs) are estimates of the like-
lihood that the offspring of an animal will possess a given trait considered 
valuable. 

Breeding for milk yield is probably the most well-known example. Predicting 
the EBV value for a dam is easy: The dams with the greatest milk yield will 
be chosen as breeders. Traditionally, the bulls that sired daughters with 
the greatest milk yield would be selected to breed with these dams. The 
selection of sires is now guided by genomic estimated breeding values that 
have been derived from the genotyping of bulls that have shown a high rate 
of success in producing female offspring with high milk yields (Calus 2010). 
These bulls are generally mated with high milk producing dams. 

As noted in an article comparing polygenic scores and GEBV (Wray et al. 
2019, p. 1132), “As in human genetics, although the goal for PRS [polygen-
ic risk scores or polygenic scores] is prediction of the phenotype, the accu-
racy of prediction for an individual is low; hence, the value of polygenic 
scores is, like in livestock genetics, best interpreted at the group level.” To be 
clear, what GEBV is predicting in this example is which bulls, when mated 
with high milk yield dams, will produce female offspring with a high yield 
(a trait the bulls themselves, of course, do not possess). In human terms, this 
would be like attempting to develop a polygenic score for fathers to predict 
the quality of their daughters’ breast milk.

How do livestock differ from humans genetically (other than that humans 
have a human genome and cows have a bovine genome)? In most breeds 
of livestock there is a significant lack of genetic diversity. In dairy cattle, 
due to artificial insemination, bulls that have been selected for their “genetic 
merit” for siring offspring with high milk production traits can sire hundreds of 
thousands of offspring. 

Cattle breeds have a very small effective population size, meaning that 
the number of individuals in the population contributing genes to the next 
population is small. The international black and white Holstein dairy cattle 
population is 25 million but the current effective population size (Ne) is 
estimated to be only 50 (Kim and Kirkpatrick 2009). It estimated that the 
ancestry of 99% of male bulls alive today can be traced back to two bulls, 
both born in the 1960s (Yue et al. 2015). It is for this reason that in cattle 
breeds, as in most livestock, there is a significant lack of genetic diversity 
and deleterious health effects related to inbreeding are considered a con-
stant threat (Bjelland et al. 2013). 

As a result, haplotype blocks in dairy cattle are about double the length of 
human linkage disequilibrium and generate linkage disequilibrium across 
chromosomes. There is no population stratification within a herd of livestock. 
At the same time, every aspect of the environment of the breeding stock of 
a herd is carefully regulated, and all animals share identical environments. 
When the methods of GEBV have been applied to natural populations, 
even the most basic predictions have failed (Charmantier et al. 2014). 
According to the additive model that underlies polygenic scores, each 
SNP acts in isolation from every other SNP: There is neither epistasis 
(genotype x genotype, G x G) interaction nor genotype x environment 
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(G x E) interaction. Each SNP contributes a fractional amount to filling the 
“space” occupied by genetic risk, and the environment fills the remainder of 
the space. According to this additive model, the overall risk (or liability) of 
persons with different levels of “genetic risk” will increase exactly the same 
amount as they move from “low risk” to “high risk” environments (Figure 3a.). 
Using GEBV, however, animal breeders tell a different story (Souza et al. 
2016, p. 207):

The genetic merit of an animal can be significantly influenced by changes in the 
breeding environment, and the progenies of a sire may not repeat the performance 
of their progenitors if they are raised in different micro-regions or farms, denoting the 
need for care when buying sires or semen due to the presence of genotype-environment 
interactions (GEI). 

Figure 3b. shows the performance of bulls with different breeding values 
for milk yield as measured by the milk yield of their daughters, in environ-
ments characterized by increasingly negative conditions (as measured by 
a variety of environmental factors—climatic, sanitary, alimentary—known 
to adversely affect milk yield). It shows unpredictable G x E interactions, 
where G is the GEBV of the sire, and E is the daughters’ environmental 
gradient. Bulls with the highest GEBV, based on the performance of 
daughters raised in the most positive environment, exhibit the lowest GEBV 
when they are raised in the most negative environment and vice versa, a 
phenomenon known as “cross-over.” G x E interaction results in a change 
in GEBV itself. 

G x E occurs because environmental changes bring about changes in gen-
otype expression, that is, whether, when, where (in which cells or tissues), 
and in what manner a gene is transcribed and whether, when, where, 
and in what manner the product of gene transcription is synthesized into  
a non-coding RNA or potentially a multitude of different proteins. 

Genotype expression is not an all-or-nothing matter (i.e., in a certain tissue, 
a gene either can or cannot be transcribed) but rather a state of continual 
interchange between DNA sequences and the cellular and extracellular 
environments. The result of this is that a polygenic score, assuming that it is 
really based upon differences in gene frequencies that bear some causal re-
lation to genetic risk, will not be generalizable across different environments. 

And in this case, the non-generalizability would result not from model-overfit-
ting or population stratification but from the nature of genetics itself.

VII. Genetic Heterogeneity
Researchers in behavior genetics have the tendency to treat complex social 
behaviors as if they are single, well defined phenotypes, and to assume 
that each of these phenotypes must have a single set (or “core” set) of risk 
alleles. In other words, they largely deny genetic heterogeneity, which 
suggests that different polymorphisms can be risk factors for the same pheno-
type (Maier et al. 2018). 

On the one hand, genetic heterogeneity could mean that there are different 
genetic risk factors for the same disorder/phenotype (e.g., a form of thyroid 
disease known as thyroid dyshormonogenesis can result from mutations in 
one of several different genes, including DUOX2, SLC5A5, TG, and TPO). 
On the other hand, genetic heterogeneity can indicate something important 
about the nature of the phenotype we are considering.  

Consider chronic nausea (CN). How does CN differ from EduYears? Even 
asking this question seriously is an indication that something has gone very 
wrong with the study of human behavior. And indeed, it has, but what 
is important in the current context is that if researchers were to charac-
terize CN in the same manner as EduYears is characterized, they would 

 12 For more on GEBV and G x E, see Cheruiyot et al. (2020), Santos et al. (2020), Mulim et al. (2020). 

Figure 3. G x E interaction a. Additive model of polygenic risk in which there is 
no G x E. The reaction to “environmental risk” (x- axis) 
is exactly the same, regardless of the level of genetic 
risk (y-axis).

b. Extensive G X E interaction graphed in what 
is known as a “reaction norm.” Different GEBVs 
(=genetic risk) respond in significantly different ways 
in different environmental gradients (= environmental 
risk). There is significant cross-over and “re-ranking” 
of the animals.

1b is adapted from Souza et al. (2019)
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seriously mischaracterize it. EduYears is treated as a distinct phenotype with a 
distinct set of genetic risk factors (ignoring here the fact that the “phenotype” 
EduYears is going to mean different things [i.e., be a different phenotype] in 
different educational systems). 

In contrast, while CN may be a phenotype, it is a phenotype that can be 
caused by numerous other phenotypes. Put another way, it is a symptom 
that can have innumerable causes/risk factors (e.g. gastroesophageal reflux 
disease, peptic ulcer disease, gastroparesis, bowel obstruction, migraines, 
postural hypotension [abnormal change in heart rate when changing posture], 
etc.). Each of these is a different phenotype (i.e., a different disorder) which 
may or may not have its own set of genetic and/or environmental risk factors. 
At the same time, CN could have multiple different interacting risk factors: CN 
risk could be due to peptic ulcer and reflux disease, or gastroparesis and 
migraines, or extreme emotional distress and postural hypotension. 

Each of these phenotypes—peptic ulcer, reflux disease, migraines—can itself 
be due to different phenotypes with different genetic and/or environmental risk 
factors, and so on. Thus, CN risk might be due to migraines (one out of many 
possible “risk phenotypes” for CN) and migraines might be due to emotional 
stress (one out of many possible “risk phenotypes” for migraines). At the same 
time, the causal structure of risk is not unidirectional (e.g., stress could be a risk 
factor for migraines, but migraines could also be a risk factor for stress). Why 
is EduYears treated as having a genetic risk structure so much simpler than 
chronic nausea? 

Which brings us to the following question: When researchers claim that 
polygenic scores can predict EduYears or income, are they actually claiming 
that these are phenotypes with their own distinct set of genetic risk factors? At 

times, the answer is unclear. For example, in a paper titled, “Genome-wide 
analysis identifies molecular systems and 149 genetic loci associated with in-
come,” the authors make the following comments concerning their phenotype 
(Hill et al. 2019a, p. 11):

A further limitation is that molecular genetic analyses of phenotypes, such as 
intelligence, income or SEP [socioeconomic position], appear prone to being 
misinterpreted. Such misunderstandings include describing associated variants 
as, genes for income…[G]enetic variants do not act directly on income; instead, 
genetic variants are associated with partly heritable traits (such as intelligence, 
conscientiousness, health, etc.), which have their own complex gene-to-phe-
notype paths (including neural variables) and are ultimately associated with 
income. 

This assertion runs contrary to much of what the authors say elsewhere in 
this paper. They note that (Hill et al. 2019a, p. 6) “genetic correlations [a 
measure of the percentage of SNPs shared between two attributes] were 
calculated between household income and a set of 27 data sets covering 
psychological traits, mental health, health and well-being, anthropometric 
traits, metabolic traits and reproduction.” 

However, if income is not “directly” heritable but rather influenced by other 
traits that are heritable, then it has no genetic risk-SNPs of its own to be 
compared with the risk-SNPs of other phenotypes. What, precisely, are 
they correlating with what? To be sure, illness, including mental illness, can 
adversely affect someone’s income. So, are we predicting heritable health 
problems, which have an indirect effect on income, which is itself non-her-
itable? Furthermore, what is the difference between indirect causation of the 
kind the authors discuss here and confounding?
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Consider the following well-known example, adapted to the present. If we 
were constructing SNP heritability estimates and polygenic risk scores for 
the phenotype “earring-wearing” using data from the UK Biobank, and did 
not take into account sex differences, we could predict earring wearing on 
the basis of a polygenic score that was actually predicting sex differences. 
Would it be legitimate to call sex a heritable phenotype that indirectly 
affects earring wearing? Sex is, of course, a heritable phenotype, but any 
study that resulted in a polygenic score that was predicting sex as opposed 
to “earring wearing” per se would be accused of confounding. 

Another example: If we did not take into account the possibility of popu-
lation stratification, we might construct a polygenic score that predicted 
being a member of an ethnic group that was discriminated against. 
While the generalizability of scores might be limited, in the population 
of interest it would in fact (let us assume) predict average differences in 
income. Therefore, we could say that our risk score predicts being of a 
certain ethnicity and being a member of this ethnicity indirectly (via so-
cial discrimination) predicts income. Why is this kind of indirect causation 
considered illegitimate (i.e., a form of population stratification)? And how 
is this different from a score predicting, say, schizophrenia, bipolar disor-
der, and depression, and indirectly predicting income and SES because 
serious mental illness is associated with poverty (Sylvestre et al. 2018)? 

This question applies not just to studies of the genetics of income, but 
to the genetics of all complex social behaviors because if we assume, 
arguendo, that polygenic scores are actually predicting a certain amount 
of trait variance in a population, there is a lingering question as to what, 
precisely, the genetic risk factors are risk 
factors for.

Conclusion
Researchers in behavior genetics, reflecting on candidate gene associ-
ation studies, warned that results should be deemed tentative until they 
have been replicated in multiple large samples, that the failure to exer-
cise caution could hamper scientific progress, that extra caution should 
be exercised in new and “hot” areas of research, and that the failure of 
CGA studies was a cautionary tale. 

Have the lessons of the cautionary tale been learnt? The answer is quite 
clear. We are still seeing the same incautiousness, the same exaggerat-
ed claims, and the same hype. Just as there were thousands of published 
CGA studies in which researchers heralded the ability to predict such 
things as school performance, income, and intelligence on the basis 
of differences in allele frequencies of a handful of polymorphisms, we 
are now confronted with an ever-growing number of studies in which 
researchers herald the ability to predict exactly the same things on the 
basis of millions of polymorphisms. Most importantly, this research is 
plagued by many of the same methodological problems that brought 
down CGA studies.

We are beginning to see published studies pointing to significant problems 
with the current methodologies, problems related to model overfitting, pop-
ulation stratification, and long-range linkage disequilibrium, to name a few. 
One can only hope that they are taken more seriously than were the early 
warnings concerning CGA studies. The failures of that era have never been 
given a proper post-mortem. One can only hope that, decades from now, 
the same question that was asked of that era will not have to be repeated: 
How on earth could we have spent 20 years and hundreds of millions of 
dollars studying pure noise?
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Glossary
Allele: One of two or more alternate forms of a gene or any segment of 
DNA. Persons inherit two copies of each allele, one from each parent.

Base pair (bp): A pair of complimentary nucleotides on a DNA strand. 
It is used as a relative unit of measure, (e.g., two polymorphisms are 100 bp 
apart).

“Big-p, little-n” (p >> n): Refers to problems that arise when there are 
more predictors than samples (n) in a multivariate model. Also called “the 
curse of dimensionality.”

Bonferroni correction: A statistical technique for dealing with the 
problem of multiple hypothesis testing—that is, as one performs more tests, the 
likelihood of false positives (Type I errors) increases. In a Bonferroni correction, 
the p-value of .05 is divided by the number of tests performed.

Candidate gene association study: A type of study in which a 
researcher hypothesizes a relationship between a particular polymorphism 
and a particular phenotype on the basis of the presumed physiological effect 
of that polymorphism. The hypothesis is then tested on a study sample.

Copy number variation (CNV): A common type of DNA variation, 
ranging from 50 bp – 10 Mb and involving DNA deletions, duplications, 
higher order amplifications (e.g., triplications, quadruplications), insertions, 
and inversions, as well as more complex rearrangements. In human genomes, 
CNVs involve more DNA sequences than SNPs.

Diallelic: A single nucleotide polymorphism (SNP) that has two possible 
variant forms.

Discovery sample: The sample (or samples) on which a GWAS (or 
GWASs) is performed.

G x E interaction: Occurs when the effect of the environmental exposure 
on a certain outcome is strongly influenced or contingent upon genotype and 
vice versa (gene effect on the outcome is contingent on exposure).

G x G interaction: Also referred to as epistasis. Occurs when the effect 
of one polymorphism on a phenotype is modified by another polymorphism 
or polymorphisms. In biological epistasis, the gene-gene interaction has a 
biological basis. Statistical epistasis describes deviation from additivity in a 
linear statistical model.

GEBV: Genetic estimate breeding values. A GEBV is used animal (as well as 
plant) breeding to predict whether offspring will have a trait deemed valuable 
on the basis of the genotype of one of the parents. Polygenic scores are 
based on GEBV.

Genetic heterogeneity: The phenomenon is which different poly-
morphisms or mutations of different genes act as risk factors for the same 
phenotype.

Genome wide association study: A study that involves investigating 
DNA markers across large sections of the genomes of a large number of 
persons to find genetic variations associated with a particular phenotype.

Haplotype: A group of two or more alleles that are inherited together (and 
are conventionally thought of as lying in close proximity). 

Heritability: A measure of the amount of variation in a phenotype (or 
phenotypic risk) among the members of a given population, at a given time, 
that can be correlated with members’ genetic variation. 

Independent validation sample: A sample separate from both the 
discovery and training samples on which the results of a polygenic score can 
be tested.

Kilobase (kb): 1 kilobase = 1000 bp,

Linkage Disequilibrium (LD): Alleles that tend to be inherited together 
(i.e., form a haplotype) are said to be in linkage disequilibrium.

MAOA: A gene for the enzyme monoamine oxidase A, which plays a 
role in the regulation of several different neurotransmitters. Polymorphisms of 
MAOA were often associated with a wide variety of behaviors via candidate 
gene association studies.

Marker-SNP: Any of the million or more SNPs across the human genome 
that are examined in a GWAS. Marker SNPs are not themselves thought 
to be causal. Rather, they are used to locate regions in a genome where 
(unknown) causal alleles are thought to be located.

Megabase (Mb): 1 Mb = 1,000,000 bp/1000 kb.

Model overfitting: The phenomenon in which a model refers to quirks in 
the data (or noise) rather than real relationships between the variables. Can 
occur when researchers have too much freedom to manipulate the data.

Null hypothesis: When the null hypothesis is true, there is no relationship 
between the two variables being studied; results showing a relationship are 
due to chance alone.

P-hacking: The manipulation of data in a way that produces a desired 
p-value. P-hacking is typically done through manipulation of “researcher 
degrees of freedom,” or the decisions made by the investigator. These include 
when to stop collecting data, whether or not the data will be transformed, 
which statistical tests (and parameters) will be used, and so on.

P-value: Represents the probability of finding a relationship between the 
two variables when the null hypothesis is true. This is typically expressed as a 
level of statistical significance between 0 and 1. The smaller the p-value, the 
stronger the evidence that you should reject the null hypothesis. For testing a 
hypothesis, the commonly employed p-value is ≤ 0.05.
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Polygenic score: A numerical score that is intended to be a measure of 
genetic risk for a given phenotype. Polygenic scores are said to predict a 
certain amount of trait variance in a given population.

Polymorphism: A form of a genetic variant that occurs with a certain 
frequency in a given population (typically defined as greater than 1% in a 
given population).

Population stratification: The phenomenon is which differences in 
allele frequencies between cases and controls is actually due to (or is con-
founded by) ethnic/ancestral differences in allele frequencies. 

R-squared: A statistical measure that represents the proportion of the vari-
ance for a dependent variable that’s explained by an independent variable or 
variables in a regression model.

Single nucleotide polymorphism (SNP): A substitution of a single 
nucleotide at a specific position in the genome with a different nucleotide, that 
occurs in a sufficiently large fraction of the population.

Somatic mosaicism: Having two or more genetically distinct populations 
of cells within the same individual.

Structured population: A population that contains persons of  
different ancestral/ethnic backgrounds and different allele frequencies.

Training sample: A sample to which a polygenic score, derived from a 
discovery sample, is applied. In general, the training sample is used to tweak 
the polygenic score so as to achieve the highest R-squared possible. 

Twin study: Used to derive heritability estimates on the basis of the  
presumed genetic similarity between monozygotic (MZ) v. dizygotic  
(DZ) twins.

Type 1 error: A false positive. Occurs when a valid null hypothesis  
is incorrectly rejected.

Type II error: A false negative. Occurs when a false null  
hypothesis is not rejected.
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